找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of Optimal Transport Maps and Applications; Guido Philippis Book 2013 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 11:01:11 | 只看該作者
12#
發(fā)表于 2025-3-23 16:13:24 | 只看該作者
,The Monge-Ampère equation,a proof of Caffarelli .. regularity theorem [18, 20]. Many of the tools developed in this Chapter will play a crucial role in the proof of the Sobolev regularity in Chapter 3. In the last Section we show, without proofs, how to build smooth solutions to the Monge-Ampère equation throughout the metho
13#
發(fā)表于 2025-3-23 18:11:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:27 | 只看該作者
Book 2013rove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.
15#
發(fā)表于 2025-3-24 04:48:18 | 只看該作者
Book 2013he known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Ch
16#
發(fā)表于 2025-3-24 09:01:09 | 只看該作者
2239-1460 nt results like Sobolev regularity and Sobolev stability forIn this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on exis
17#
發(fā)表于 2025-3-24 13:51:45 | 只看該作者
,Second order stability for the Monge-Ampère equation and applications,nd ? respectively. By the convexity of .. and ., and the uniqueness of solutions to (2.1), it is immediate to deduce that .. → . uniformly, and ?.. → ?. in ... (Ω) for any . < ∞. What can be said about the strong convergence of ....? Due to the highly nonlinear character of the Monge-Ampère equation, this question is nontrivial.
18#
發(fā)表于 2025-3-24 15:05:00 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:12:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 洪湖市| 镇沅| 泗洪县| 治多县| 会泽县| 安达市| 囊谦县| 佛学| 千阳县| 虞城县| 池州市| 大化| 东方市| 赞皇县| 嵊州市| 丰都县| 禄丰县| 巨鹿县| 吴江市| 桂东县| 任丘市| 鄱阳县| 涡阳县| 夏津县| 台山市| 文安县| 庆安县| 伽师县| 林西县| 库伦旗| 鄯善县| 宜君县| 中阳县| 黄龙县| 施秉县| 修文县| 闵行区| 大化| 龙里县| 祁阳县|