找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regelungstechnik I; Klassische Verfahren Heinz Unbehauen Book 1987Latest edition Springer Fachmedien Wiesbaden 1987 Identifikation.Regelkre

[復(fù)制鏈接]
樓主: cerebral
31#
發(fā)表于 2025-3-26 21:54:40 | 只看該作者
32#
發(fā)表于 2025-3-27 05:06:50 | 只看該作者
33#
發(fā)表于 2025-3-27 05:18:30 | 只看該作者
Beschreibung linearer kontinuierlicher Systeme im Frequenzbereich, Gerade bei regelungstechnischen Aufgaben erfüllen die zu l?senden Differentialgleichungen meist die zum Einsatz der Laplace-Transformation notwendigen Voraussetzungen. Die Laplace-Transformation ist eine ., die einer gro?en Klasse von . f(t) umkehrbar eindeutig eine . F(s) zuordnet.
34#
發(fā)表于 2025-3-27 11:32:04 | 只看該作者
,Stabilit?t linearer kontinuierlicher Regelsysteme, instabil werden kann, d.h. da? Schwingungen auftreten k?nnen, deren Amplituden (theoretisch) über alle Grenzen anwachsen. In Abschnitt 2.3.7 wurde ein System als stabil bezeichnet, das auf jedes beschr?nkte Eingangssignal mit einem beschr?nkten Ausgangssignal antwortet. Nachfolgend soll nun n?her d
35#
發(fā)表于 2025-3-27 17:18:58 | 只看該作者
Das Wurzelortskurven-Verfahren,n Regelkreises das noch unbekannte Verhalten des geschlossenen Regelkreises beeinflussen. Diese Frage l??t sich mit Hilfe des Wurzelortskurven-Verfahrens beantworten. Dieses Verfahren erlaubt anhand der bekannten Pol- und Nullstellenverteilung der übertragungsfunktion G.(s) des offenen Regelkreises
36#
發(fā)表于 2025-3-27 18:29:21 | 只看該作者
Klassische Verfahren zum Entwurf linearer kontinuierlicher Regelsysteme,ommen auch die komplette ger?tetechnische Auslegung geh?rt, sei nachfolgend auf das Problem beschr?nkt, für eine vorgegebene Regelstrecke einen geeigneten Regler zu entwerfen, der die an den Regelkreis gestellten Anforderungen m?glichst gut oder bei geringstem technischen Aufwand erfüllt.
37#
發(fā)表于 2025-3-27 22:01:31 | 只看該作者
Identifikation von Regelkreisgliedern mittels deterministischer Signale,imentellen Vorgehen, hingewiesen. Bei dem . Vorgehen erfolgt die Bildung des gesuchten mathematischen Modells anhand der in den Regelkreisgliedern sich abspielenden Elementarvorg?nge unter Verwendung technischer Daten und physikalischer Grundgesetze. Dieser theoretische Zweig der Identifikation stel
38#
發(fā)表于 2025-3-28 02:18:04 | 只看該作者
,Stabilit?t linearer kontinuierlicher Regelsysteme,n System als stabil bezeichnet, das auf jedes beschr?nkte Eingangssignal mit einem beschr?nkten Ausgangssignal antwortet. Nachfolgend soll nun n?her die Stabilit?t linearer Regelsysteme behandelt werden. Dazu wird zun?chst folgende Definition eingeführt:
39#
發(fā)表于 2025-3-28 07:41:13 | 只看該作者
40#
發(fā)表于 2025-3-28 13:35:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邻水| 宜川县| 建阳市| 靖江市| 施甸县| 金塔县| 扎赉特旗| 榆树市| 朝阳区| 凉城县| 卢氏县| 高州市| 邯郸市| 讷河市| 桃江县| 遂宁市| 威海市| 张家界市| 武汉市| 长宁县| 杭锦旗| 长丰县| 贵定县| 格尔木市| 阳江市| 敦煌市| 油尖旺区| 湖口县| 红安县| 仲巴县| 米泉市| 无极县| 辽阳县| 商丘市| 博白县| 南召县| 鄂州市| 东明县| 中牟县| 宁波市| 延吉市|