找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups; Friedrich Wehrung Book 2017 Springer International Publishi

[復(fù)制鏈接]
樓主: cerebral
11#
發(fā)表于 2025-3-23 10:06:58 | 只看該作者
Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups978-3-319-61599-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
12#
發(fā)表于 2025-3-23 15:30:08 | 只看該作者
Partial Commutative Monoids,l commutative monoid, which works then as the “enveloping monoid of .”. Although this process has been mostly studied in case . satisfies the refinement axiom (this originates in Tarski [109]), the initial part of the work does not require that axiom.
13#
發(fā)表于 2025-3-23 19:04:53 | 只看該作者
Type Monoids and V-Measures, action. The latter concept has been studied in a wide array of works including Banach [17], Tarski [109]. Its relation with type monoids of Boolean inverse semigroups was recognized in Wallis’ Ph.D. thesis [116], see also Kudryavtseva et al. [71], Lawson and Scott [77].
14#
發(fā)表于 2025-3-24 00:22:14 | 只看該作者
Constructions Involving Involutary Semirings and Rings,-automorphism (we will talk about .), semirings will enjoy quite a fruitful interaction with Boolean inverse semigroups, the basic idea being to have the multiplications agree and the inversion map correspond to the involution.
15#
發(fā)表于 2025-3-24 05:53:10 | 只看該作者
Background,Generally speaking, this book deals with arithmetical systems that arise naturally as invariants of various mathematical structures.
16#
發(fā)表于 2025-3-24 09:10:22 | 只看該作者
17#
發(fā)表于 2025-3-24 13:43:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:17:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:25:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 大石桥市| 安徽省| 平顺县| 阜南县| 句容市| 贡嘎县| 陕西省| 毕节市| 济阳县| 阳城县| 黎川县| 卓资县| 佛教| 安福县| 耿马| 开远市| 常山县| 衡南县| 厦门市| 潞西市| 巴林右旗| 道真| 长宁区| 岳阳县| 改则县| 长沙县| 土默特右旗| 咸丰县| 磐石市| 庆安县| 柳林县| 安吉县| 淄博市| 阳高县| 鄂尔多斯市| 合江县| 和硕县| 无极县| 连山| 威信县|