找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recurrent Sequences; Key Results, Applica Dorin Andrica,Ovidiu Bagdasar Textbook 2020 Springer Nature Switzerland AG 2020 recurrent sequenc

[復制鏈接]
樓主: Madison
21#
發(fā)表于 2025-3-25 06:51:45 | 只看該作者
0941-3502 ematics.Presents a diverse range of state-of-the-art topics .This self-contained text presents state-of-the-art results on recurrent sequences and their applications in algebra, number theory, geometry of the complex plane and discrete mathematics. It is designed to appeal to a wide readership, rang
22#
發(fā)表于 2025-3-25 10:42:42 | 只看該作者
Textbook 2020omplex plane and discrete mathematics. It is designed to appeal to a wide readership, ranging from scholars and academics, to undergraduate students, or advanced high school and college students training for competitions. The content of the book is very recent, and focuses on areas where significant
23#
發(fā)表于 2025-3-25 13:50:11 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:57 | 只看該作者
Basic Recurrent Sequences,In this chapter we present basic results and examples of first-order and second-order linear recurrent sequences with arbitrary coefficients, some classical sequences, polynomials, and linear fractional transformations.
25#
發(fā)表于 2025-3-25 20:38:35 | 只看該作者
More on Second-Order Linear Recurrent Sequences,The sequence (..).?=?(..(., .;., .)). defined by . with ., ., ., and . arbitrary complex numbers is called a Horadam sequence. For simplicity, we shall denote (..(., .;., .)). by (..). hereafter.
26#
發(fā)表于 2025-3-26 02:55:11 | 只看該作者
27#
發(fā)表于 2025-3-26 05:46:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:37 | 只看該作者
Dorin Andrica,Ovidiu BagdasarAppropriate for math olympiad competitors; Contains challenging problems and solutions.Teaches techniques and facts that are central to mathematics.Presents a diverse range of state-of-the-art topics
29#
發(fā)表于 2025-3-26 16:38:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:04:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉义县| 静宁县| 富宁县| 东丰县| 甘谷县| 郴州市| 安溪县| 武汉市| 万宁市| 法库县| 建瓯市| 乌兰察布市| 香河县| 错那县| 金溪县| 景德镇市| 车致| 甘肃省| 柘荣县| 河源市| 嘉善县| 大英县| 厦门市| 中山市| 凤城市| 东乡族自治县| 于都县| 霍城县| 巨鹿县| 集安市| 神木县| 永善县| 富阳市| 嫩江县| 焦作市| 孟连| 武夷山市| 东乡县| 比如县| 修武县| 扶风县|