找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Toeplitz and Pseudodifferential Operators; The Nikolai Vasilevs Roland Duduchava,Israel Gohberg,Vladimir Rabinovic Book 20

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 06:05:45 | 只看該作者
The Laplace-Beltrami Operator on a Rotationally Symmetric Surface,ich standard separation of variables works, it is hoped that the study of this example can nevertheless bring to light some features which may subsist in the more general framework of the calculus on compact manifolds with cusps due to V. Rabinovich et al. (1997).
22#
發(fā)表于 2025-3-25 09:55:53 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:42 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:09 | 只看該作者
On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices,o infinity. The main result, which is based on certain assumptions, describes the structure of the eigenvectors in terms of the Laurent polynomial that generates the matrices up to an error term that decays exponentially fast. This result is applicable to both extreme and inner eigenvectors.
25#
發(fā)表于 2025-3-25 20:45:48 | 只看該作者
Complete Quasi-wandering Sets and Kernels of Functional Operators,tors under consideration either consist of a zero element or contain a subset isomorphic to a space .), where . has a positive Lebesgue measure. Consequently, such operators are Fredholm if and only if they are invertible.
26#
發(fā)表于 2025-3-26 02:48:47 | 只看該作者
27#
發(fā)表于 2025-3-26 06:08:32 | 只看該作者
On the Bergman Theory for Solenoidal and Irrotational Vector Fields, I: General Theory,Bergman space and the Bergman reproducing kernel; main properties of them are studied. Among other objects of our interest are: the analogues of the Bergman projections; the behavior of the Bergman theory for a given domain whenever the domain is transformed by a conformal map.
28#
發(fā)表于 2025-3-26 09:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 16:11:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐齐哈尔市| 洛隆县| 集贤县| 通州区| 雷山县| 邛崃市| 桦甸市| 焉耆| 水城县| 绥芬河市| 乌拉特后旗| 永川市| 庆安县| 武清区| 洞口县| 麻江县| 泽州县| 云安县| 无锡市| 西昌市| 和林格尔县| 嘉祥县| 景泰县| 竹溪县| 富阳市| 五大连池市| 昌图县| 深圳市| 台东县| 驻马店市| 泰和县| 陕西省| 汾西县| 卢湾区| 东阿县| 济源市| 沅陵县| 陆良县| 策勒县| 中江县| 芒康县|