找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations; Xinyuan Wu,Bin Wang Book 2018 Springer Natu

[復制鏈接]
樓主: microbe
31#
發(fā)表于 2025-3-26 23:08:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:44 | 只看該作者
An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations,the energy of the underlying Hamiltonian wave equations. To this end, we first define and discuss the bounded operator-argument functions on the underlying domain. We then introduce an operator-variation-of-constants formula, based on which we present an energy-preserving scheme for nonlinear Hamilt
33#
發(fā)表于 2025-3-27 05:40:16 | 只看該作者
,Arbitrarily High-Order Time-Stepping Schemes for Nonlinear Klein–Gordon Equations,ry conditions. We first formulate an abstract ordinary differential equation (ODE) on a suitable infinite–dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula for the nonlinear abstract ODE. The nonlinear stability and converg
34#
發(fā)表于 2025-3-27 10:49:04 | 只看該作者
An Essential Extension of the Finite-Energy Condition for ERKN Integrators Solving Nonlinear Wave Eonlinear wave equations. We begin with an error analysis of ERKN integrators for multi-frequency highly oscillatory systems ., where . is positive semi-definite, .. These highly oscillatory problems arise from the semi-discretisation of conservative or dissipative nonlinear wave equations. The struc
35#
發(fā)表于 2025-3-27 15:20:18 | 只看該作者
Exponential Fourier Collocation Methods for First-Order Differential Equations,. We discuss in detail the connections of EFCMs with trigonometric Fourier collocation methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an extension, in a strict mathematical sense, of these existing methods in the literature.
36#
發(fā)表于 2025-3-27 20:01:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:00 | 只看該作者
39#
發(fā)表于 2025-3-28 09:29:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:54:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 15:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
棋牌| 烟台市| 镇原县| 霍邱县| 丽江市| 鸡泽县| 鞍山市| 米林县| 余庆县| 冕宁县| 太康县| 监利县| 台安县| 大庆市| 榆林市| 商水县| 拉孜县| 东山县| 普安县| 大港区| 崇明县| 郁南县| 镇安县| 昌江| 翁牛特旗| 绵阳市| 全椒县| 曲靖市| 垣曲县| 牡丹江市| 呼伦贝尔市| 祥云县| 巴彦县| 大余县| 罗田县| 毕节市| 汤阴县| 三穗县| 宁陵县| 竹北市| 临夏县|