找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Quantum Optics; Ramarao Inguva Book 1993 Springer Science+Business Media New York 1993 Phase.Theoretical physics.in

[復(fù)制鏈接]
樓主: mature
41#
發(fā)表于 2025-3-28 16:26:29 | 只看該作者
Generalized Commutation Relations for Single Mode Oscillatorwhich the number operators is again an infinite series and contains BE, FD and Greenberg’s infinite statistics (IS) as special cases. We discuss the quantization of free fields with infinite statistics following the procedure of Umezawa and Takahashi..
42#
發(fā)表于 2025-3-28 20:27:07 | 只看該作者
43#
發(fā)表于 2025-3-28 23:34:36 | 只看該作者
44#
發(fā)表于 2025-3-29 05:23:54 | 只看該作者
45#
發(fā)表于 2025-3-29 08:48:02 | 只看該作者
46#
發(fā)表于 2025-3-29 14:24:14 | 只看該作者
47#
發(fā)表于 2025-3-29 19:09:58 | 只看該作者
48#
發(fā)表于 2025-3-29 22:02:57 | 只看該作者
Localization of Photons in Random and Quasiperiodic Mediaentially a tight binding model where a single band is formed from s-like atomic orbitals with energies . corresponding to site . The bandwidth B is given by B=2VZ, where V is the overlap energy integral and Z is the coordination number, eps were assumed to be random with a common distribution with w
49#
發(fā)表于 2025-3-30 02:19:50 | 只看該作者
Thermofield Dynamics and its Applications to Quantum Opticsspace ? ? ?*, obtained by taking the direct product of ? with its dual, and are denoted by |., . >. In Liouville space representation,. on the other hand, |. >< .| are regarded as the basis vectors in the Hilbert space ? of linear operators on ?. In what follows, we shall confine ourselves to the TF
50#
發(fā)表于 2025-3-30 07:19:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松潘县| 勃利县| 平武县| 杭州市| 普宁市| 梁河县| 精河县| 望城县| 阳朔县| 崇明县| 秦皇岛市| 延长县| 山阳县| 宜兰市| 长丰县| 康马县| 伊吾县| 子洲县| 蒲江县| 城固县| 菏泽市| 牡丹江市| 陇川县| 钦州市| 福州市| 法库县| 通渭县| 确山县| 芦山县| 太原市| 庄河市| 贞丰县| 诸暨市| 霍林郭勒市| 陆河县| 滨海县| 城固县| 苏州市| 贵州省| 康平县| 嘉义市|