找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Operator Theory and Its Applications; International Confer I. Gohberg,P. Lancaster,P. N. Shivakumar Conference proce

[復制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 13:09:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:51 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:43 | 只看該作者
,On Spectral Properties of Schr?dinger-Type Operator with Complex Potential, is relatively form-bounded with respect to (-Δ). + ?.(.) with relative bound zero (therefore . has purely discrete spectrum). In the framework of the general perturbation approach, we study the spectral asymptotics and the Riesz basisness for the generalized eigenfunctions of ..
14#
發(fā)表于 2025-3-23 22:16:57 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:48 | 只看該作者
17#
發(fā)表于 2025-3-24 11:32:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:06 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:14 | 只看該作者
Spline approximation methods for Wiener- Hopf operators,nd for Wiener-Hopf operators with piecewise continuous generating function. By means of localization techniques and of the two-projections-theorem, necessary and sufficient conditions for the stability of sequences in this algebra are derived.
20#
發(fā)表于 2025-3-25 02:56:32 | 只看該作者
Inertia Conditions for the Minimization of Quadratic Forms in Indefinite Metric Spaces,lutions can be established by invoking a fundamental set of inertia conditions. While these inertia conditions are automatically satisfied in a standard Hilbert space setting, which is the case of classical least-squares problems in both the deterministic and stochastic frameworks, they nevertheless
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
墨竹工卡县| 舟山市| 甘泉县| 萨迦县| 台中县| 淮滨县| 林州市| 长葛市| 永安市| 扎赉特旗| 绵阳市| 平潭县| 屏东市| 乐山市| 榆树市| 双桥区| 姜堰市| 西畴县| 娄烦县| 赤壁市| 沙坪坝区| 饶阳县| 平南县| 乌拉特中旗| 中超| 开封市| 井研县| 石门县| 靖远县| 龙南县| 个旧市| 改则县| 佛学| 都兰县| 昌黎县| 阳新县| 页游| 兴业县| 新野县| 仙居县| 商河县|