找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; 8th European Worksho Sertan Girgin,Manuel Loth,Daniil Ryabko Conference proceedings 2008 Springe

[復(fù)制鏈接]
樓主: coerce
41#
發(fā)表于 2025-3-28 14:59:04 | 只看該作者
,Policy Learning – A Unified Perspective with Applications in Robotics,umanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning algorithms from a common point of view, i.e, policy gradient algorithms, natural-gradient algorithms and EM-like policy learning. Secondly, we present se
42#
發(fā)表于 2025-3-28 19:54:48 | 只看該作者
43#
發(fā)表于 2025-3-29 00:24:58 | 只看該作者
United We Stand: Population Based Methods for Solving Unknown POMDPs,cy, which is typically much simpler than the environment. We present a global search algorithm capable of finding good policies for POMDPs that are substantially larger than previously reported results. Our algorithm is general; we show it can be used with, and improves the performance of, existing
44#
發(fā)表于 2025-3-29 03:37:24 | 只看該作者
Regularized Fitted Q-Iteration: Application to Planning,ing a user-chosen kernel function. We derive bounds on the quality of the solution and argue that data-dependent penalties can lead to almost optimal performance. A simple example is used to illustrate the benefits of using a penalized procedure.
45#
發(fā)表于 2025-3-29 07:51:57 | 只看該作者
46#
發(fā)表于 2025-3-29 14:10:46 | 只看該作者
47#
發(fā)表于 2025-3-29 17:49:36 | 只看該作者
0302-9743 reinfor- ment learning, on how it could be made more e?cient, applied to a broader range of applications, and utilized at more abstract and symbolic levels. As a participant in this 8th European Workshop on Reinforcement Learning, I was struck by both the quality and quantity of the presentations. T
48#
發(fā)表于 2025-3-29 22:05:20 | 只看該作者
Efficient Reinforcement Learning in Parameterized Models: Discrete Parameter Case,nd for the algorithm is linear (up to a logarithmic term) in the size. of the parameter space, independently of the cardinality of the state and action spaces. We further demonstrate that much better dependence on . is possible, depending on the specific information structure of the problem.
49#
發(fā)表于 2025-3-30 00:01:52 | 只看該作者
50#
發(fā)表于 2025-3-30 06:53:12 | 只看該作者
Tile Coding Based on Hyperplane Tiles,on capabilities of the tile coding approximator: in the hyperplane tile coding broad generalizations over the problem space result only in a soft degradation of the performance, whereas in the usual tile coding they might dramatically affect the performance.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐津县| 广西| 婺源县| 大荔县| 平邑县| 开阳县| 宁强县| 弥勒县| 建始县| 大石桥市| 广昌县| 平利县| 柳江县| 鄱阳县| 夏河县| 平度市| 涪陵区| 姚安县| 吴桥县| 通许县| 秦安县| 英山县| 察雅县| 任丘市| 林西县| 廊坊市| 洪雅县| 永济市| 阳新县| 宣化县| 郓城县| 陇西县| 德惠市| 阜宁县| 宜川县| 开阳县| 喀什市| 涞水县| 平阴县| 宁波市| 确山县|