找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Operator Theory in Hilbert and Krein Spaces; Jussi Behrndt,Karl-Heinz F?rster,Carsten Trunk Conference proceedings 2010

[復(fù)制鏈接]
樓主: 諷刺文章
21#
發(fā)表于 2025-3-25 06:21:32 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:14 | 只看該作者
Fredholm Properties of Unbounded Operators on Interpolation Spaces,operator between compatible couples. If .. and .. are everywhere defined and bounded, then we obtain the operators usually considered in the classical interpolation theory. As an example, we study differential operators on different ..-spaces induced by the same differential expression.
25#
發(fā)表于 2025-3-25 22:18:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:46 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:45 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces, where .., P. denote respectively the orthogonal projections in . on . and on .. For . ε .(.) such that ker (.. + P. ? I) = {0} the . of . and . is a uniquely determined element of .(.) such that (setting .(.) = . and .. = 2.. ? .). A mapping Π of .(.) into itself is called an isometry if . This pap
28#
發(fā)表于 2025-3-26 11:47:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:52:08 | 只看該作者
30#
發(fā)表于 2025-3-26 17:23:16 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces,er may be considered as a sequel to [.]) since it relies heavily on the notion of bisector defined therein, as well as the notation and several results proved in that earlier work, in order to determine the arcwise connected components of .(.) and the properties of isometry on that space. This leads to a number of applications to linear relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 宣威市| 彭阳县| 绥宁县| 左贡县| 吉林省| 卓尼县| 慈利县| 辽阳市| 布拖县| 舒城县| 缙云县| 明光市| 临漳县| 萍乡市| 沙田区| 洛宁县| 延安市| 星子县| 潢川县| 永和县| 蒙自县| 通化县| 新野县| 安多县| 芷江| 石家庄市| 雷山县| 孟村| 通辽市| 宁德市| 鹤壁市| 乐业县| 洛浦县| 鹤峰县| 从化市| 新昌县| 玛纳斯县| 三原县| 普陀区| 千阳县|