找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Memetic Algorithms; William E. Hart,J. E. Smith,N. Krasnogor Book 2005 Springer-Verlag Berlin Heidelberg 2005 algorithm

[復(fù)制鏈接]
樓主: OBESE
31#
發(fā)表于 2025-3-26 22:50:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:41 | 只看該作者
33#
發(fā)表于 2025-3-27 08:16:08 | 只看該作者
-Fitness Landscapes and Memetic Algorithms with Greedy Operators and ,-opt Local Searchroblems, including the traveling salesman problem and the graph bipartitioning problem. In this contribution, a .-opt local search heuristic and a greedy heuristic for .-landscapes are proposed for use in memetic algorithms. The latter is used for the initialization of the population and in a greedy
34#
發(fā)表于 2025-3-27 10:41:15 | 只看該作者
35#
發(fā)表于 2025-3-27 15:52:44 | 只看該作者
Designing Efficient Genetic and Evolutionary Algorithm Hybridsns use GEAs in combination with domain specific methods to achieve superior performance. Such combinations, often referred to as hybrids, stand to gain much from a system-level framework for efficiently combining global searchers such as GEAs with domain-specific and local searchers. This chapter pr
36#
發(fā)表于 2025-3-27 19:59:10 | 只看該作者
The Design of Memetic Algorithms for Scheduling and Timetabling Problemse often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. There is a considerable number of memetic algorithms that have been proposed in the literature to solve scheduling and timetabling problem
37#
發(fā)表于 2025-3-27 23:53:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:41:54 | 只看該作者
39#
發(fā)表于 2025-3-28 09:01:00 | 只看該作者
Using Memetic Algorithms for Optimal Calibration of Automotive Internal Combustion Enginesntrol units is optimized. It is shown that in all cases MAs that work on locally optimal solutions calculated by the corresponding HCs significantly improve former results using Genetic Algorithms (GAs). The algorithms have been successfully applied at BMW Group Munich.
40#
發(fā)表于 2025-3-28 13:19:21 | 只看該作者
-Fitness Landscapes and Memetic Algorithms with Greedy Operators and ,-opt Local Searchbination operator, are compared on three types of .-landscapes. In accordance with the landscape analysis, the MAs with recombination perform better than the MAs with mutation for landscapes with low epistasis. Moreover, the MAs are shown to be superior to previously proposed MAs using 1-opt local search.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲周县| 天津市| 易门县| 东乡族自治县| 循化| 崇信县| 金川县| 玉屏| 德庆县| 滨州市| 鲁甸县| 南通市| 出国| 香格里拉县| 大冶市| 靖安县| 辽宁省| 莆田市| 吉木乃县| 乾安县| 梁河县| 文化| 奉化市| 麻江县| 呼和浩特市| 拜泉县| 南澳县| 甘孜县| 平果县| 永仁县| 乌鲁木齐市| 廉江市| 从江县| 禹城市| 古田县| 柘荣县| 积石山| 雷波县| 斗六市| 论坛| 贵德县|