找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Geometric Inequalities; D. S. Mitrinovi?,J. E. Pe?ari?,V. Volenec Book 1989 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 07:11:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:04 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
23#
發(fā)表于 2025-3-25 13:54:14 | 只看該作者
Some Other Transformations,n use these results for generating many other inequalities, i.e. using any known inequality for the sides of a triangle ., and any result from I.3, we get the inequality ., where a., b., c. are the sides of a new triangle given as in I.3.
24#
發(fā)表于 2025-3-25 18:33:14 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:07 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
26#
發(fā)表于 2025-3-26 00:43:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:23 | 只看該作者
Special Triangles,ng a. + b. + c. = 8R. is a right triangle. Starting from these well-known properties V. Devidé [1] has investigated at length the special class of triangles defined by a. + b. + c. = 6R.. O. Bottema [2] considered the general class of triangles (k-triangles) defined by a. + b. + c. = kR.. In [12] it
29#
發(fā)表于 2025-3-26 12:37:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:35:20 | 只看該作者
Some Trigonometric Inequalities, that many of these inequalities are still valid for real numbers A, B, C which satisfy the condition . where p is a natural number (which has to be odd in some cases). This also applies to the inequality of M. S. Klamkin [2] which can be specialized in many ways to obtain numerous well known inequalities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 京山县| 内黄县| 昆明市| 响水县| 姜堰市| 桓仁| 吉林市| 霍邱县| 象州县| 河津市| 山东省| 登封市| 乐昌市| 闻喜县| 拉孜县| 中卫市| 简阳市| 淳化县| 潮州市| 敖汉旗| 广汉市| 顺平县| 平果县| 若羌县| 涟水县| 黑水县| 明水县| 遂川县| 扶绥县| 信丰县| 雷波县| 昌乐县| 彭泽县| 开鲁县| 高尔夫| 沁源县| 太和县| 右玉县| 襄樊市| 云和县|