找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Civil Engineering for Sustainable Communities; Select Proceeding of N. Vinod Chandra Menon,Sreevalsa Kolathayar,K. S. C

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 05:16:45 | 只看該作者
M. Geetha Priya,Dilsa Nasar,A. R. Deva Jefflin,Sushil Kumar Singh,Sandip Oza
22#
發(fā)表于 2025-3-25 10:32:26 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:37:42 | 只看該作者
Recent Advances in Civil Engineering for Sustainable CommunitiesSelect Proceeding of
25#
發(fā)表于 2025-3-25 20:48:47 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:31 | 只看該作者
Conventional and Ensemble Machine Learning Techniques to Predict the Compressive Strength of Sustainh as decision tree (DT) was developed as a conventional machine learning (CML) model, whereas Random Forest (RF), AdaBoost (AdB), and Gradient Boosting (GB) were developed as ensemble machine learning (EML) models. Hyperparameter tuning was also performed to enhance each?model’s performance. As a re
27#
發(fā)表于 2025-3-26 08:18:57 | 只看該作者
Experimental Study on Strength Properties of Concrete Incorporated with Bacteriactive and contribute to reduced CO. emissions. Consequently, bacterial concrete significantly enhances the strength and durability of concrete structures, promoting a sustainable and eco-friendly future.
28#
發(fā)表于 2025-3-26 11:54:06 | 只看該作者
Predicting the Porosity of SCM-Blended Concrete Composites?Using Ensemble Machine Learning Modelsng (EML) models to predict the values of porosity with differing proportions of SCMs in the concrete mix. Random forest (RF), AdaBoost (AdB), and gradient boosting (GB) were the EML models that were developed in this study. Gradient boosting was shown to be the best predictor of porosity, while the
29#
發(fā)表于 2025-3-26 13:58:42 | 只看該作者
30#
發(fā)表于 2025-3-26 18:20:54 | 只看該作者
Prognosis of Concrete Strength: The State of Art in Using Different Machine Learning Algorithmsd filters out the less important features. The insights of using such concepts bring numerous possibilities for reducing the errors for better predictions. This study can demonstrate different possibilities for making the infrastructure sustainable and predictable by studying the mechanical properti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
友谊县| 广元市| 永康市| 龙口市| 敖汉旗| 济南市| 获嘉县| 开平市| 阳西县| 肥城市| 双鸭山市| 多伦县| 饶河县| 昌吉市| 黑河市| 泗洪县| 荔浦县| 普兰店市| 尚义县| 波密县| 洱源县| 开鲁县| 南靖县| 环江| 湄潭县| 盘锦市| 拜城县| 洛南县| 民权县| 玛多县| 海城市| 黄龙县| 蕲春县| 仁怀市| 运城市| 新竹县| 玛沁县| 突泉县| 二手房| 南京市| 始兴县|