找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Numbers, Generalizations of the Reals, and Theories of Continua; Philip Ehrlich Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: 一再
11#
發(fā)表于 2025-3-23 12:57:15 | 只看該作者
The Hyperreal Lineall draw pictures of the hyperreal line and sketch its construction as an ultrapower of the real line. In the middle part of the article, we shall survey mathematical results about the structure of the hyperreal line. Near the end, we shall discuss philosophical issues concerning the nature and sign
12#
發(fā)表于 2025-3-23 14:08:45 | 只看該作者
All Numbers Great and Smallentified each ordinal with the set of all ordinals previously created, so that, 0 = ?, 1 = {0}, … , ω = {0, 1, …}, and so on. More recently, Conway [5, 6] discovered that these two methods can be subsumed under a more general construction which leads to an ordered class of numbers embracing the real
13#
發(fā)表于 2025-3-23 19:39:09 | 只看該作者
Rational and Real Ordinal Numbers for the real axis have been constructed by Sikorski [9] and, independently, Klaua [4, 5]. Reference [9] introduced integral and rational ordinal numbers; references [4, 5] introduced integral, rational, and real ordinal numbers. The purpose of these constructions is to extend the real axis into the
14#
發(fā)表于 2025-3-24 01:17:51 | 只看該作者
15#
發(fā)表于 2025-3-24 04:47:06 | 只看該作者
Veronese’s Non-Archimedean Linear Continuums of 1896, 1897 and 1898. Tullio Levi-Civita, as Hahn says, gave an arithmetical representation of Veronese’s continuum in 1892/1893 and 1898 [5, 6]. Finally, Hahn cites Arthur Schoenflies’ article of 1906 [7].
16#
發(fā)表于 2025-3-24 07:19:17 | 只看該作者
Calculation, order and Continuityreal algebra achieved a long-standing objective which up until then had been considered as desirable but probably unattainable. I shall then identify the immediate ancestral lines whose convergence gave rise to this new approach to the continuum. Finally, I shall point out that, by providing an alge
17#
發(fā)表于 2025-3-24 13:42:52 | 只看該作者
18#
發(fā)表于 2025-3-24 17:02:48 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:36 | 只看該作者
tion, most apparent in the demands for “zero exposure”. One way to open a sustainable and acceptable path between such extreme views is the establishment and application of environmental standards understood as quantitative specifications of target values concerning the environment, referred to as e
20#
發(fā)表于 2025-3-25 03:12:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 个旧市| 抚州市| 海兴县| 海口市| 富民县| 桦南县| 佛教| 安仁县| 获嘉县| 全南县| 尉犁县| 广河县| 南澳县| 泗洪县| 华坪县| 河曲县| 莫力| 枣庄市| 巫溪县| 佛学| 于田县| 阿拉尔市| 丁青县| 苏尼特左旗| 六盘水市| 铁岭市| 大兴区| 鹤峰县| 通化县| 皋兰县| 高密市| 彭水| 建昌县| 台湾省| 赤峰市| 金门县| 金阳县| 永善县| 青海省| 巩留县|