找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis Methods for Markov Processes; Singular Integrals a Kazuaki Taira Book 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 10:25:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:42 | 只看該作者
Elements of Real Analysisillation (VMO) functions, the Calderón–Zygmund decomposition (Theorem .), the John–Nirenberg inequality (Theorem .), the Hardy–Littlewood maximal function (Theorem .), sharp functions (Theorem .) and spherical harmonics (Theorem .).
13#
發(fā)表于 2025-3-23 19:15:26 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:14 | 只看該作者
Calderón–Zygmund Kernels and Their Commutatorsorks in modern history of analysis. The first main result (Theorem .) asserts the existence of singular integral operators and?the second main result (Theorem .) concerns commutators of bounded mean oscillation functions (BMO) and singular integral operators. It should be emphasized that singular in
17#
發(fā)表于 2025-3-24 12:07:36 | 只看該作者
Calderón–Zygmund Variable Kernels and Their Commutatorsns and singular integral operators (Theorems 11.2 and 11.3), generalizing Theorems 10.2 and 10.3 in Chap. 10. The main idea of proof is to reduce the variable kernel case to the constant kernel case. This is done by expanding the kernel into a series of spherical harmonics (Theorem 4.41), each term
18#
發(fā)表于 2025-3-24 18:01:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:27 | 只看該作者
Calderón–Zygmund Kernels and Boundary Estimates2]). The desired global . estimate (12.3) is a consequence of the explicit boundary representation formula (14.2) for the solutions of the homogeneous Dirichlet problem and an . boundedness of some singular integral operators and boundary commutators in the boundary representation formula (14.2) (Th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
肇东市| 汤阴县| 泗洪县| 闵行区| 安康市| 尼玛县| 郯城县| 通辽市| 宜兰市| 泸定县| 霍邱县| 西宁市| 哈尔滨市| 武定县| 涡阳县| 镇巴县| 石首市| 凤山市| 栖霞市| 台中市| 修武县| 西青区| 泰来县| 柳江县| 大安市| 鹤壁市| 广水市| 肥东县| 东安县| 富宁县| 香港 | 苏尼特左旗| 清流县| 兴仁县| 安国市| 海兴县| 芜湖县| 阿巴嘎旗| 潢川县| 佛山市| 普宁市|