找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Algebraic Geometry; Jacek Bochnak,Michel Coste,Marie-Fran?oise Roy Book 1998 Springer-Verlag Berlin Heidelberg 1998 Nash functions.Na

[復(fù)制鏈接]
樓主: 斷頭臺(tái)
41#
發(fā)表于 2025-3-28 18:06:35 | 只看該作者
42#
發(fā)表于 2025-3-28 20:01:29 | 只看該作者
43#
發(fā)表于 2025-3-29 00:53:28 | 只看該作者
44#
發(fā)表于 2025-3-29 06:41:07 | 只看該作者
Stratifications,nches of algebraic curves are studied in Section 5. Semi-algebraic versions of Sard’s and Bertini’s theorems are contained in Section 6. The last section is devoted to Whitney’s conditions . and ...Throughout this chapter, R denotes a real closed field.
45#
發(fā)表于 2025-3-29 07:13:36 | 只看該作者
Real Places,lgebraic curves can be considered as points of the real spectrum. We finish the chapter with a glimpse of the theory of fans, presenting a few applications to the study of basic semi-algebraic sets..Throughout this chapter, R is a fixed real closed field.
46#
發(fā)表于 2025-3-29 13:45:42 | 只看該作者
47#
發(fā)表于 2025-3-29 17:35:39 | 只看該作者
48#
發(fā)表于 2025-3-29 21:43:31 | 只看該作者
Witt Rings in Real Algebraic Geometry,we prove that the morphism .(.(.))[1/2] .(..(.))[1/2], induced by the inclusion .(.) ..(.), is surjective. This is part of the result of Brumfiel, which asserts that this morphism is actually an isomorphism.
49#
發(fā)表于 2025-3-30 03:11:15 | 只看該作者
0071-1136 nto material already in the French edition. Many of these advances and insights have been incorporated in this English version of the book, so that it may be viewed as being substantially different from the original.978-3-642-08429-4978-3-662-03718-8Series ISSN 0071-1136 Series E-ISSN 2197-5655
50#
發(fā)表于 2025-3-30 06:21:34 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematihttp://image.papertrans.cn/r/image/822116.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 思南县| 灵山县| 南昌县| 凌源市| 武汉市| 杭州市| 鹤山市| 池州市| 花垣县| 乐亭县| 阳江市| 城市| 东阿县| 于田县| 大渡口区| 若尔盖县| 海安县| 吉木萨尔县| 垣曲县| 昔阳县| 驻马店市| 新竹县| 栾城县| 龙海市| 兴业县| 达日县| 霍州市| 鄱阳县| 澄迈县| 马龙县| 新绛县| 肃宁县| 辽源市| 南京市| 永兴县| 安西县| 岚皋县| 北川| 特克斯县| 武邑县|