找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reachability Problems; 14th International C Sylvain Schmitz,Igor Potapov Conference proceedings 2020 Springer Nature Switzerland AG 2020 ar

[復(fù)制鏈接]
樓主: fumble
11#
發(fā)表于 2025-3-23 11:51:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:35:48 | 只看該作者
13#
發(fā)表于 2025-3-23 19:39:25 | 只看該作者
Reachability Set Generation Using Hybrid Relation Compatible Saturationatible structures for encoding its reachability set and transition relations. For systems that can be formally expressed using ordinary Petri Nets (PN), implicit relations, a static alternative to decision diagram-based representation of transition relations, can significantly improve the performanc
14#
發(fā)表于 2025-3-24 00:42:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:00:04 | 只看該作者
Quantum-over-Classical Advantage in?Solving Multiplayer Gamestimes referred to as one-heap Nim games..In quantum game theory, a subset of Subtraction games became the first explicitly defined class of zero-sum combinatorial games with provable separation between quantum and classical complexity of solving them. For a narrower subset of Subtraction games, an e
17#
發(fā)表于 2025-3-24 12:50:42 | 只看該作者
Efficient Restrictions of Immediate Observation Petri Netstheoretical chemistry (chemical reaction networks). IO nets enjoy many useful properties[., .], but like the general case of conservative Petri nets they have a .-complete reachability problem. In this paper we explore two restrictions of the reachability problem for IO nets which lower the complexi
18#
發(fā)表于 2025-3-24 16:17:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:07 | 只看該作者
The Collatz Process Embeds a Base Conversion Algorithmand since Generalised Collatz Maps are known to simulate Turing Machines [Conway, 1972], it seems natural to ask what kinds of algorithmic behaviours it embeds. We define a quasi-cellular automaton that exactly simulates the Collatz process on the square grid: on input ., written horizontally in bas
20#
發(fā)表于 2025-3-25 00:25:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 遵义县| 耿马| 叙永县| 芦溪县| 西藏| 根河市| 大石桥市| 潮州市| 顺平县| 荥经县| 吉安市| 治县。| 鹤庆县| 芮城县| 文水县| 资阳市| 甘南县| 子洲县| 松溪县| 普安县| 邯郸县| 黄梅县| 山丹县| 新沂市| 叙永县| 岚皋县| 闻喜县| 济南市| 花垣县| 奇台县| 平谷区| 拉萨市| 辽源市| 许昌市| 盐源县| 思南县| 蓬溪县| 沾益县| 佛坪县| 彭阳县|