找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John T. Tate Textbook 2015Latest edition Springer International Publishing Switzer

[復(fù)制鏈接]
樓主: Monsoon
11#
發(fā)表于 2025-3-23 13:26:50 | 只看該作者
Textbook 2015Latest editionnal numbers. It is this number theoretic question that is the main subject of .Rational Points on Elliptic Curves.. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation
12#
發(fā)表于 2025-3-23 15:14:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:58 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:31 | 只看該作者
Complex Multiplication,d to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we need, and you can look in any basic algebra text such as [14, 23, 26] for the proofs and additional background material.
15#
發(fā)表于 2025-3-24 04:42:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:51:36 | 只看該作者
Points of Finite Order, study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation . and that the point at infinity . is taken to be the zero element for the group law.
17#
發(fā)表于 2025-3-24 13:57:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:53 | 只看該作者
Integer Points on Cubic Curves,), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
19#
發(fā)表于 2025-3-24 22:53:00 | 只看該作者
Complex Multiplication,ean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter 2 So we will need to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we
20#
發(fā)表于 2025-3-24 23:42:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
准格尔旗| 临夏县| 昭觉县| 黄山市| 凉城县| 古蔺县| 宁德市| 青龙| 浦东新区| 甘谷县| 铅山县| 庆阳市| 临江市| 衡阳市| 金乡县| 龙胜| 西青区| 十堰市| 油尖旺区| 锡林郭勒盟| 曲麻莱县| 津市市| 紫阳县| 梁山县| 桂阳县| 安平县| 商南县| 翼城县| 铜山县| 巴彦县| 睢宁县| 汪清县| 盘锦市| 长治县| 清徐县| 云林县| 天祝| 秦安县| 丹棱县| 玉树县| 大荔县|