找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John Tate Textbook 19921st edition Springer Science+Business Media New York 1992 A

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:59:21 | 只看該作者
Complex Multiplication,ere we mean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter II. So we will need to use some basic theorems about extension fields and Galois theory, but nothing very fancy. We will start by reminding you of most of the
12#
發(fā)表于 2025-3-23 17:47:12 | 只看該作者
13#
發(fā)表于 2025-3-23 20:07:00 | 只看該作者
Points of Finite Order,n our study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation ., and that the point at infinity . is taken to be the zero element for the group law.
14#
發(fā)表于 2025-3-24 00:02:35 | 只看該作者
Integer Points on Cubic Curves,y), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
15#
發(fā)表于 2025-3-24 03:00:47 | 只看該作者
Introduction,The theory of Diophantine equations is that branch of number theory which deals with the solution of polynomial equations in either integers or rational numbers. The subject itself is named after one of the greatest of the ancient Greek algebraists, Diophantus of Alexandria,. who formulated and solved many such problems.
16#
發(fā)表于 2025-3-24 07:41:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:31:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:02 | 只看該作者
Undergraduate Texts in Mathematicshttp://image.papertrans.cn/r/image/821449.jpg
20#
發(fā)表于 2025-3-25 01:25:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖市| 广元市| 西林县| 杨浦区| 新化县| 曲麻莱县| 都匀市| 漳州市| 陆丰市| 丰都县| 武川县| 上饶县| 营口市| 兴城市| 改则县| 时尚| 昌吉市| 连南| 洛隆县| 南部县| 焦作市| 克山县| 太保市| 封开县| 旌德县| 安国市| 姚安县| 抚顺县| 离岛区| 遂川县| 温泉县| 三都| 招远市| 宁强县| 芜湖县| 越西县| 河东区| 霞浦县| 巴中市| 鲁甸县| 佳木斯市|