找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Extended Thermodynamics beyond the Monatomic Gas; Tommaso Ruggeri,Masaru Sugiyama Book 2015 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 不同
11#
發(fā)表于 2025-3-23 12:27:20 | 只看該作者
12#
發(fā)表于 2025-3-23 16:38:53 | 只看該作者
Mathematical Structureolic systems in balance form with a convex entropy density. We summarize the main results: The proof of the existence of the . in terms of which a system becomes symmetric, and several properties derived from the qualitative analysis concerning symmetric hyperbolic systems. In particular, the Cauchy
13#
發(fā)表于 2025-3-23 18:00:59 | 只看該作者
Waves in Hyperbolic Systemsa short review on the modern theory of wave propagation for hyperbolic systems. Firstly, we present the theory of linear waves emphasizing the role of the dispersion relation. The high frequency limit in the dispersion relation is also studied. Secondly, nonlinear acceleration waves are discussed to
14#
發(fā)表于 2025-3-24 01:24:37 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:16 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:49 | 只看該作者
Maximum Entropy Principle for Rarefied Polyatomic Gasthat obtained in the phenomenological ET theory with 14 fields discussed in Chap.?. The main idea is to consider a generalized distribution function depending not only on the velocity but also on an extra variable that connects with the internal degrees of freedom of a constituent molecule. On the b
17#
發(fā)表于 2025-3-24 11:21:13 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:46 | 只看該作者
19#
發(fā)表于 2025-3-24 21:11:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:22 | 只看該作者
Non-linear ET6 and the Role of the Dynamic Pressure: Phenomenological Approachre, without adopting the near-equilibrium approximation. We prove its compatibility with the universal principles (the entropy principle, the Galilean invariance and the stability), and obtain the symmetric hyperbolic system with respect to the main field. The correspondence between the ET 6-field (
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天台县| 淮阳县| 高州市| 神农架林区| 通榆县| 繁昌县| 奉节县| 宝鸡市| 泗水县| 横山县| 临泉县| 随州市| 屯门区| 泾川县| 金门县| 邻水| 桦南县| 贵定县| 三明市| 阿瓦提县| 铜陵市| 余干县| 德格县| 太保市| 莒南县| 普兰县| 鸡泽县| 仙居县| 高唐县| 涿鹿县| 万载县| 夏邑县| 静宁县| 宝应县| 安徽省| 敖汉旗| 北票市| 南汇区| 信宜市| 霍林郭勒市| 衡南县|