找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Walks in the Quarter-Plane; Algebraic Methods, B Guy Fayolle,Roudolf Iasnogorodski,Vadim Malyshev Book 19991st edition Springer-Verl

[復制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 11:31:18 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:40 | 只看該作者
Book 19991st editionkhotski, Hilbert, Plemelj, Carleman, Wiener, Hopf. This one-dimensional theory took its final form in the works of Krein, Muskhelishvili, Gakhov, Gokhberg, etc. The third point, and the related probabilistic problems, have been thoroughly investigated by Spitzer, Feller, Baxter, Borovkov, Cohen, etc
13#
發(fā)表于 2025-3-23 21:04:47 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:09 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:37 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:39 | 只看該作者
The Case of a Finite Group,functions .,.,.. are polynomials. In this case, we are able to characterize completely the solutions of the basic functional equation, and also to give necessary and sufficient conditions for these solutions to be rational or algebraic.
17#
發(fā)表于 2025-3-24 14:34:45 | 只看該作者
Solution in the Case of an Arbitrary Group,e group. Hereafter, we shall obtain the complete solution when the order of the group of the random walk is arbitrary, i.e. possibly infinite. The main idea consists in the reduction to a factorization problem on a curve in the complex plane. Generally one comes up first with integral equations and,
18#
發(fā)表于 2025-3-24 18:01:24 | 只看該作者
The Genus 0 Case, in Chapter 2 and exactly five situations have been found, described by the relations (2.3.5) to (2.3.8). In fact, since (2.3.6) and (2.3.8) are equivalent up to a permutation of the variables . and ., we are left with four significantly different cases, which will be treated separately.
19#
發(fā)表于 2025-3-24 22:14:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南开区| 灵丘县| 左权县| 宁津县| 盖州市| 桓台县| 会泽县| 镇巴县| 望谟县| 岳阳市| 灵璧县| 博乐市| 岳普湖县| 巴林左旗| 马关县| 松原市| 平果县| 仪陇县| 科技| 门源| 大新县| 桦川县| 荔波县| 德昌县| 乌海市| 马关县| 四会市| 墨江| 海门市| 彩票| 西林县| 广元市| 贵定县| 襄城县| 眉山市| 京山县| 贺州市| 尼玛县| 临湘市| 湘潭县| 嵩明县|