找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan Summation of Divergent Series; Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser

[復(fù)制鏈接]
查看: 42379|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:54:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series
編輯Bernard Candelpergher
視頻videohttp://file.papertrans.cn/822/821004/821004.mp4
概述Provides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Ramanujan Summation of Divergent Series;  Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser
描述The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory.
出版日期Book 2017
關(guān)鍵詞Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
版次1
doihttps://doi.org/10.1007/978-3-319-63630-6
isbn_softcover978-3-319-63629-0
isbn_ebook978-3-319-63630-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series影響因子(影響力)




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series被引頻次




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series被引頻次學(xué)科排名




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series年度引用




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series年度引用學(xué)科排名




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series讀者反饋




書(shū)目名稱(chēng)Ramanujan Summation of Divergent Series讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:39 | 只看該作者
https://doi.org/10.1007/978-3-319-63630-6Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
板凳
發(fā)表于 2025-3-22 02:19:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:03:04 | 只看該作者
Dependence on a Parameter,In this chapter we give three fundamental results on the Ramanujan summation of series depending on a parameter.
5#
發(fā)表于 2025-3-22 11:15:55 | 只看該作者
Bernard CandelpergherProvides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
6#
發(fā)表于 2025-3-22 16:27:10 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:50 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:42 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:51 | 只看該作者
Book 2017od, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical ev
10#
發(fā)表于 2025-3-23 07:06:22 | 只看該作者
Ramanujan Summation,hird section we interpret this constant as the value of a precise solution of a difference equation. Then we can give in Sect.?. a rigorous definition of the Ramanujan summation and its relation to the usual summation for convergent series.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 佛学| 苍山县| 西畴县| 上犹县| 湛江市| 彭水| 车致| 大余县| 德昌县| 星子县| 昂仁县| 华安县| 伊宁县| 濮阳县| 呼伦贝尔市| 航空| 方正县| 莎车县| 社旗县| 久治县| 南丰县| 特克斯县| 龙门县| 当雄县| 温宿县| 盖州市| 永善县| 玉树县| 阿合奇县| 海淀区| 松原市| 奉化市| 永福县| 龙州县| 曲阳县| 兴文县| 礼泉县| 临澧县| 施甸县| 广西|