找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Radon Integrals; An abstract approach Bernd Anger,Claude Portenier Book 1992 Springer Science+Business Media New York 1992 distribution.int

[復(fù)制鏈接]
查看: 37771|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:00:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Radon Integrals
副標題An abstract approach
編輯Bernd Anger,Claude Portenier
視頻videohttp://file.papertrans.cn/821/820914/820914.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Radon Integrals; An abstract approach Bernd Anger,Claude Portenier Book 1992 Springer Science+Business Media New York 1992 distribution.int
描述In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the v
出版日期Book 1992
關(guān)鍵詞distribution; integral; integration; measure; measure theory; stability
版次1
doihttps://doi.org/10.1007/978-1-4612-0377-3
isbn_softcover978-1-4612-6733-1
isbn_ebook978-1-4612-0377-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

書目名稱Radon Integrals影響因子(影響力)




書目名稱Radon Integrals影響因子(影響力)學科排名




書目名稱Radon Integrals網(wǎng)絡(luò)公開度




書目名稱Radon Integrals網(wǎng)絡(luò)公開度學科排名




書目名稱Radon Integrals被引頻次




書目名稱Radon Integrals被引頻次學科排名




書目名稱Radon Integrals年度引用




書目名稱Radon Integrals年度引用學科排名




書目名稱Radon Integrals讀者反饋




書目名稱Radon Integrals讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:49 | 只看該作者
Bernd Anger,Claude Portenierve and com- understanding, preventing, diagnosing and treating psychological, cognitive, emotional, developmental, prehensive resource that provides up-to-date informa- tion on a broad array of problems and issues related to behavioral, and family problems of children. Of partic- children, adolescen
地板
發(fā)表于 2025-3-22 06:38:08 | 只看該作者
Bernd Anger,Claude Portenierve and com- understanding, preventing, diagnosing and treating psychological, cognitive, emotional, developmental, prehensive resource that provides up-to-date informa- tion on a broad array of problems and issues related to behavioral, and family problems of children. Of partic- children, adolescen
5#
發(fā)表于 2025-3-22 10:33:51 | 只看該作者
0743-1643 lent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades,
6#
發(fā)表于 2025-3-22 15:45:46 | 只看該作者
Book 1992ical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in partic
7#
發(fā)表于 2025-3-22 19:35:23 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:16 | 只看該作者
General Integration Theory,The theory of integration is permeated by the interaction of two different structures, the canonical order and multiplication in the extended real line . and the canonical conoid structure, i.e. additional and multiplication by positive scalars, in
9#
發(fā)表于 2025-3-23 04:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柏乡县| 海丰县| 永春县| 兴安县| 青海省| 库伦旗| 南阳市| 万宁市| 广灵县| 河北区| 沁水县| 天镇县| 陈巴尔虎旗| 腾冲县| 峨山| 延安市| 连州市| 烟台市| 江永县| 闽清县| 长乐市| 措勤县| 大悟县| 阿荣旗| 当阳市| 稷山县| 昆明市| 安平县| 凤山市| 广平县| 呼图壁县| 调兵山市| 安达市| 宁城县| 北辰区| 建瓯市| 吐鲁番市| 哈密市| 桐庐县| 库尔勒市| 蚌埠市|