找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ROBOT 2017: Third Iberian Robotics Conference; Volume 2 Anibal Ollero,Alberto Sanfeliu,Carlos Cardeira Conference proceedings 2018 Springer

[復(fù)制鏈接]
樓主: 補給線
41#
發(fā)表于 2025-3-28 15:36:58 | 只看該作者
Mixed-Policy Asynchronous Deep Q-Learning such as deep neural networks, have been successfully used in both single- and multi-agent environments with high dimensional state-spaces. The multi-agent learning paradigm faces even more problems, due to the effect of several agents learning simultaneously in the environment. One of its main conc
42#
發(fā)表于 2025-3-28 21:41:48 | 只看該作者
Reward-Weighted GMM and Its Application to?Action-Selection in Robotized Shoe Dressingask and must select the action that maximizes success probability among a repertoire of pre-trained actions. We investigate the case in which sensory data is only available before making the decision, but not while the action is being performed. In this paper we propose to use a Gaussian Mixture Mod
43#
發(fā)表于 2025-3-29 01:14:26 | 只看該作者
44#
發(fā)表于 2025-3-29 04:51:56 | 只看該作者
Tactile Sensing and Machine Learning for?Human and Object Recognition in?Disaster?Scenariosrios where haptic feedback provides a valuable information for the search of potential victims. To extract haptic information from the environment, a tactile sensor attached to a lightweight robotic arm is used. Then, methods based on the SURF descriptor, support vector machines (SVM), Deep Convolut
45#
發(fā)表于 2025-3-29 11:01:43 | 只看該作者
46#
發(fā)表于 2025-3-29 11:42:05 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:56 | 只看該作者
49#
發(fā)表于 2025-3-30 01:19:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:28:18 | 只看該作者
Reward-Weighted GMM and Its Application to?Action-Selection in Robotized Shoe Dressingorithm to use the result of each execution to update the model, thus adapting the robot behavior to the user and evaluating the effectiveness of each pre-trained action. The proposed algorithm is applied to a robotic shoe-dressing task. Simulated and real experiments show the validity of our approach.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 隆子县| 日照市| 白城市| 平利县| 阳城县| 岳池县| 浪卡子县| 龙游县| 永城市| 台湾省| 许昌市| 读书| 长岛县| 墨玉县| 婺源县| 江油市| 石泉县| 延边| 水富县| 铁力市| 革吉县| 黑龙江省| 贞丰县| 五峰| 通道| 弥渡县| 波密县| 田阳县| 比如县| 阿克| 宁武县| 灵石县| 兴和县| 文昌市| 浙江省| 银川市| 区。| 常德市| 平舆县| 老河口市|