找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: q-Rung Orthopair Fuzzy Sets; Theory and Applicati Harish Garg Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
樓主: notable
51#
發(fā)表于 2025-3-30 09:07:59 | 只看該作者
52#
發(fā)表于 2025-3-30 14:46:00 | 只看該作者
Interval Complex q-Rung Orthopair Fuzzy Aggregation Operators and Their Applications in Cite Selecters (IVC q-ROFNs) are introduced to solve multi-attribute decision-making (MADM) problems. The IVC-q-ROFSs are formed by combining interval complex fuzzy sets (IVCFSs) and q-rung orthopair fuzzy sets (q-ROFSs) and these can be viewed as an extension of fuzzy sets (FSs), intuitionistic fuzzy sets (IF
53#
發(fā)表于 2025-3-30 16:44:46 | 只看該作者
54#
發(fā)表于 2025-3-30 21:11:49 | 只看該作者
,Pentagonal q-Rung Orthopair Numbers and?Their Applications,efined on real number .. Then, normal Pq-RO-numbers defined in [0,?1] and by using the concept of s-norm and t-norm their laws of operations are proposed including their properties. Also, to compare any two Pq-RO-numbers, 1. and 2. rank value of Pq-RO-numbers are proposed. Furthermore, some operator
55#
發(fā)表于 2025-3-31 02:21:00 | 只看該作者
q-Rung Orthopair Fuzzy Soft Set-Based Multi-criteria Decision-Making,hopair fuzzy sets” (q-ROFSs) and Molodtsov’s soft sets. Certain new concepts of q-ROFSSs theory including algebraic features on these sets are proposed. The significance of linguistic variables in q-ROFSS information is discussed and extended towards real-life circumstances. Mathematical models for
56#
發(fā)表于 2025-3-31 07:39:40 | 只看該作者
57#
發(fā)表于 2025-3-31 11:06:08 | 只看該作者
q-Rung Orthopair Fuzzy Supra Topological Applications in Data Mining Process,and Ramadan?(Indian J Pure Appl Math 18(4):322–329, 1987, [.]) are produced using q-rung orthopair fuzzy mappings. Finally, a new multiple attribute decision-making technique based on the q-rung orthopair fuzzy scoring function is suggested as an application to tackle medical diagnosis issues.
58#
發(fā)表于 2025-3-31 15:58:41 | 只看該作者
59#
發(fā)表于 2025-3-31 20:47:53 | 只看該作者
60#
發(fā)表于 2025-3-31 22:03:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德清县| 无极县| 财经| 临澧县| 永州市| 巩义市| 多伦县| 新巴尔虎右旗| 西乡县| 昭平县| 西丰县| 措美县| 颍上县| 类乌齐县| 德令哈市| 岐山县| 定日县| 哈巴河县| 通辽市| 鄂州市| 时尚| 武夷山市| 泽普县| 栾川县| 遂溪县| 固安县| 昆明市| 长沙市| 宁明县| 南郑县| 手游| 建德市| 黄陵县| 九寨沟县| 奈曼旗| 广昌县| 阿坝县| 华容县| 从江县| 宿州市| 谷城县|