找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: q-RASAR; A Path to Predictive Kunal Roy,Arkaprava Banerjee Book 2024 The Author(s), under exclusive license to Springer Nature Switzerland

[復(fù)制鏈接]
樓主: 相持不下
11#
發(fā)表于 2025-3-23 12:25:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:28 | 只看該作者
Tools, Applications, and Case Studies (q-RA and q-RASAR),of chemical information compared to conventional descriptor-based QSAR modeling approaches. Thus, in most of the examples of modeling biological activity, toxicity, and materials property modeling using the q-RASAR technique presented in this chapter, the q-RASAR models show better quality of predic
13#
發(fā)表于 2025-3-23 21:16:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:54:43 | 只看該作者
Chemical Information and Molecular Similarity,pes, bond types, functionalities, interatomic distances, arrangements of functionality within a molecular skeleton, branching, cyclicity, hydrogen bonding propensity, molecular size, etc. are critical information in determining the interaction of a molecule with other molecules of the same compound
15#
發(fā)表于 2025-3-24 03:03:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:33 | 只看該作者
,Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure–Activity Relationships (q-RAhown superior performance over QSAR-derived predictions in several examples. This was further extended to the generation of QSAR-like statistical models, i.e., quantitative read-across structure-activity relationship (q-RASAR) by using various similarity and error-based descriptors computed from ori
17#
發(fā)表于 2025-3-24 13:53:25 | 只看該作者
18#
發(fā)表于 2025-3-24 16:22:35 | 只看該作者
Future Prospects,, materials science, and predictive toxicology. The similarity metrics and error considerations may be further refined, possibly with the application of sophistical machine learning approaches, for further development of this new field. More extensive applications of q-RA and q-RASAR in medicinal ch
19#
發(fā)表于 2025-3-24 22:49:36 | 只看該作者
2191-5407 tools.This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling metho
20#
發(fā)表于 2025-3-25 00:00:29 | 只看該作者
Book 2024odel development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 汉源县| 贡山| 无为县| 泰州市| 山阳县| 兴仁县| 东阳市| 平谷区| 万安县| 宜宾市| 博客| 济宁市| 桂平市| 翁牛特旗| 昭平县| 中方县| 岗巴县| 遵化市| 湖州市| 禄丰县| 三河市| 连城县| 邵东县| 兴业县| 台州市| 长垣县| 安康市| 平利县| 高州市| 大关县| 望城县| 荣成市| 桦川县| 大港区| 谢通门县| 云南省| 云龙县| 营山县| 封开县| 藁城市|