找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Stationary Distributions; Markov Chains, Diffu Pierre Collet,Servet Martínez,Jaime San Martín Book 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: Disperse
21#
發(fā)表于 2025-3-25 04:07:52 | 只看該作者
Pierre Collet,Servet Martínez,Jaime San Martíndivision of labour. Economic integration — the division of labour beyond the borders of individual states and the consequent extension of foreign trade — is essential if the technical and economic parameters of production in a broad range of industries are to be improved: an increase in the internat
22#
發(fā)表于 2025-3-25 09:31:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:31:14 | 只看該作者
ns to be established by an . system of balances — in precise form for the most significant goods and in a general fashion for aggregate flows. Each detailed balance exhibits availabilities and major requirements. This long-established planning practice can be described in the well-known equation, th
24#
發(fā)表于 2025-3-25 17:08:16 | 只看該作者
Introduction,process is said to be killed when it hits the trap and it is assumed that this happens almost surely. We investigate the behavior of the process before being killed, more precisely we study what happens when one conditions the process to survive for a long time.
25#
發(fā)表于 2025-3-25 21:48:49 | 只看該作者
Quasi-Stationary Distributions: General Results, distributions (QSDs). In Theorem?2.2 of Sect.?., we show that starting from a QSD the killing time is exponentially distributed, and in Theorem?2.6 of Sect.?., we show that the killing time and the state of killing are independent random variables. In Theorem?2.11 of Sect.?., we give a theorem of e
26#
發(fā)表于 2025-3-26 03:01:09 | 只看該作者
Markov Chains on Finite Spaces,the normalized left Perron–Frobenius eigenvector of the jump rates matrix restricted to the allowed states. The right eigenvector is shown to be the asymptotic ratio of survival probabilities. In Sect.?., it is proved that the trajectories that survive forever form a Markov chain which is an .-proce
27#
發(fā)表于 2025-3-26 05:54:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:07:42 | 只看該作者
30#
發(fā)表于 2025-3-26 18:22:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤山县| 洛隆县| 双桥区| 尚志市| 临海市| 磐石市| 玉环县| 临汾市| 双鸭山市| 剑河县| 平潭县| 天镇县| 康乐县| 白沙| 和硕县| 得荣县| 郯城县| 镇康县| 高密市| 朔州市| 镇原县| 景德镇市| 肥东县| 安顺市| 德化县| 色达县| 绍兴市| 金川县| 贵溪市| 旬阳县| 新丰县| 依安县| 西城区| 上高县| 大荔县| 哈尔滨市| 鹤庆县| 临夏市| 石柱| 祁连县| 龙井市|