找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Periodic Motions in Families of Dynamical Systems; Order amidst Chaos Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr Book 1996 Sp

[復(fù)制鏈接]
樓主: controllers
31#
發(fā)表于 2025-3-26 21:12:24 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:48:57 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:02 | 只看該作者
Appendices,ordinates (. = 0). We briefly discussed a further simplified situation in § 1.2.1 which concerned 2-tori and was based on circle maps. However, our proof is characteristic for all the other contexts mentioned throughout. For a similar proof in the Hamiltonian setting [the Hamiltonian isotropic (.,0,
35#
發(fā)表于 2025-3-27 15:20:10 | 只看該作者
0075-8434 nvariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the on
36#
發(fā)表于 2025-3-27 21:04:43 | 只看該作者
Introduction and examples,onlinear dynamical systems [67,115,158,356]. In this book we confine ourselves with finite dimensional systems. For the theory of quasi-periodic motions in infinite dimensional dynamical systems, the reader is recommended to consult, e.g., [185,186,279–281] and references therein.
37#
發(fā)表于 2025-3-28 01:05:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:11 | 只看該作者
The continuation theory,r manifold persists under perturbations [67,115,158,356] but becomes, generally speaking, only finitely differentiable [12,347]. However, we can apply the . of the “relaxed” Theorems 2.8, 2.9, 2.11, 2.12 to the restrictions of . and . to the center manifold, see [151, 243,277,278,306] as well as [62,162].
39#
發(fā)表于 2025-3-28 09:06:14 | 只看該作者
40#
發(fā)表于 2025-3-28 10:43:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂州市| 舒城县| 赤壁市| 阿瓦提县| 彭山县| 舟曲县| 普宁市| 高州市| 卓资县| 巫溪县| 宣城市| 陇西县| 高淳县| 资阳市| 南乐县| 拉萨市| 霍州市| 青川县| 平遥县| 遂平县| 浪卡子县| 封丘县| 广昌县| 双桥区| 新疆| 华亭县| 仙居县| 新乡县| 永泰县| 华阴市| 兴隆县| 蛟河市| 津市市| 汝城县| 松滋市| 阳山县| 荆门市| 浮梁县| 厦门市| 潜山县| 嫩江县|