找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Quadratic Operators and Processes; Farrukh Mukhamedov,Nasir Ganikhodjaev Book 2015 Springer International Publishing Switzerland 2

[復制鏈接]
樓主: bankrupt
11#
發(fā)表于 2025-3-23 12:25:31 | 只看該作者
Infinite-Dimensional Quadratic Operators, the notion of a Volterra quadratic operator and study its properties. Such operators have been studied by many authors (see for example (Ganikhodzhaev, Acad Sci Sb Math 76(2):489–506, 1993; Volterra, Association Franc. Lyon 1926:96–98, 1927)) in the finite-dimensional setting.
12#
發(fā)表于 2025-3-23 15:03:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:33 | 只看該作者
0075-8434 totic behavior of the dynamical systems they generate.This i.Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dy
14#
發(fā)表于 2025-3-23 23:47:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:09 | 只看該作者
Quantum Quadratic Stochastic Operators on ,, of such a description we provide an example of a positive q.q.s.o.?which is not a Kadison–Schwarz operator. Note that such a characterization is related to the separability condition, which plays an important role in quantum information. We also study the stability of the dynamics of quadratic operators associated with q.q.s.o.s.
16#
發(fā)表于 2025-3-24 09:13:27 | 只看該作者
Quantum Quadratic Stochastic Operators,rator which is called a .. We also study the asymptotically stability of the dynamics of quadratic operators. Moreover, in this chapter we recall the definition of quantum Markov chains and establish that each q.q.s.o.?defines a quantum Markov chain.
17#
發(fā)表于 2025-3-24 10:53:39 | 只看該作者
Quadratic Stochastic Processes,ely determine a q.s.p. This allows us to construct a discrete q.s.p.?from a given q.s.o. Moreover, we provide other constructions of nontrivial examples of q.s.p.s. The weak ergodicity of q.s.p.s is also studied in terms of the marginal processes.
18#
發(fā)表于 2025-3-24 16:39:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:19:38 | 只看該作者
Infinite-Dimensional Quadratic Operators, the notion of a Volterra quadratic operator and study its properties. Such operators have been studied by many authors (see for example (Ganikhodzhaev, Acad Sci Sb Math 76(2):489–506, 1993; Volterra, Association Franc. Lyon 1926:96–98, 1927)) in the finite-dimensional setting.
20#
發(fā)表于 2025-3-24 23:43:23 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/q/image/781437.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南丰县| 古田县| 岚皋县| 长治市| 宁安市| 青神县| 巴南区| 福鼎市| 秀山| 綦江县| 道孚县| 伊川县| 平安县| 新田县| 柳林县| 甘孜县| 鹤岗市| 澄迈县| 侯马市| 陆丰市| 张掖市| 禹城市| 兴仁县| 九江市| 江北区| 简阳市| 应用必备| 云梦县| 城固县| 竹山县| 白水县| 苏尼特左旗| 施秉县| 易门县| 红原县| 长宁县| 高台县| 台中市| 久治县| 二连浩特市| 泰来县|