找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics: Theory and Applications; Ajoy Ghatak,S. Lokanathan Book 2004 Springer Science+Business Media B.V. 2004 Angular Momentum

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:30:03 | 只看該作者
Linear Harmonic Oscillator: I Solution of the Schr?dinger Equation and Relationship with the Classica quantum system along with its transition to the classical domain. It has applications in many problems in physics; e.g. in studying the vibrational spectra of molecules, quantum theory of radiation, etc. In this chapter, we will first obtain solutions of the onedimensional Schr?dinger equation cor
42#
發(fā)表于 2025-3-28 21:07:13 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:25:35 | 只看該作者
45#
發(fā)表于 2025-3-29 08:49:29 | 只看該作者
Dirac’s Bra and Ket Algebralowing Dirac, will be called as bra and ket vectors) and operators representing dynamical variables (like position coordinates, components of momentum and angular momentum) by matrices.. In the following two chapters we will use the bra and ket algebra to solve the linear harmonic oscillator problem
46#
發(fā)表于 2025-3-29 13:48:08 | 只看該作者
47#
發(fā)表于 2025-3-29 17:08:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:28:39 | 只看該作者
Book 2004ncepts, the details of which are given with great clarity in this book. Various concepts have been derived from first principles, so it can also be used for self-study. The chapters on the JWKB approximation, time-independent perturbation theory and effects of magnetic field stand out for their clar
49#
發(fā)表于 2025-3-30 00:01:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:40 | 只看該作者
Angular Momentum I—The Spherical Harmonicsakes the values .(.+1) where . = 0, 1, 2, 3,... and for each value of . there is (2. + 1) fold degeneracy; i.e. there are (2. + 1) eigenfunctions correspongding to the same eigenvalue .(. + 1).. — these eigenfunctions are known as spherical harmonics and are denoted by ..(.)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 凤庆县| 十堰市| 阿图什市| 深州市| 府谷县| 宕昌县| 铜梁县| 天峨县| 方城县| 江西省| 盐津县| 南平市| 米脂县| 常州市| 八宿县| 永新县| 呼图壁县| 米易县| 宜兴市| 安国市| 昭平县| 临安市| 尼玛县| 磐石市| 钟祥市| 吉木乃县| 凤台县| 凌云县| 沾益县| 襄汾县| 驻马店市| 名山县| 山东| 青州市| 桃江县| 盐池县| 集安市| 广德县| 习水县| 同心县|