找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics for Chemistry; Seogjoo J. Jang Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: lumbar-puncture
11#
發(fā)表于 2025-3-23 10:10:04 | 只看該作者
Polyatomic Molecules and Molecular Spectroscopy,lation of adiabatic electronic states for fixed nuclear coordinates. Taking diatomic molecules as examples, independent electron model and the approximation of linear combination of atomic orbitals as molecular orbitals (LCAO-MO) are described, and the molecular term symbols for corresponding electr
12#
發(fā)表于 2025-3-23 17:17:46 | 只看該作者
13#
發(fā)表于 2025-3-23 21:59:27 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:50 | 只看該作者
Special Topics,stem quantum dynamics and quantum master equation approaches; (iii) Green’s function approach. These topics have played important roles in theoretical and computational investigation of quantum processes in complex environments. Some of the core concepts and relations will be derived and explained.
15#
發(fā)表于 2025-3-24 03:38:43 | 只看該作者
Rotational States and Spectroscopy,description of rotational motion of diatomic molecules as free rigid rotors. Important principles concerning pure rotational transitions and those accompanying vibrational transitions are explained. Corrections for rigid rotor states, incorporating the effects of centrifugal distortion and ro-vibrational coupling, are provided as well.
16#
發(fā)表于 2025-3-24 08:20:38 | 只看該作者
17#
發(fā)表于 2025-3-24 12:30:09 | 只看該作者
Quantum Dynamics of Pure and Mixed States,ty operator and extension of the time dependent Schr?dinger equation to the quantum Liouville equation become necessary. Application of the perturbation theory to this quantum Liouville equation is presented as well.
18#
發(fā)表于 2025-3-24 15:47:59 | 只看該作者
Concepts and Assumptions of Quantum Mechanics,uation defined in a one dimensional space are introduced along with their major properties. The chapter concludes with a solution of a quantum particle in a one dimensional box in order to illustrate the major concepts and ideas of quantum mechanics.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 正阳县| 石河子市| 德江县| 响水县| 屏东县| 册亨县| 淮滨县| 武宁县| 连江县| 宁晋县| 岗巴县| 保山市| 新干县| 阿拉尔市| 石渠县| 怀集县| 湄潭县| 林甸县| 英德市| 谢通门县| 乐安县| 秦安县| 安泽县| 井陉县| 邢台市| 通州市| 怀来县| 那坡县| 绥江县| 南开区| 东乌珠穆沁旗| 吉木萨尔县| 昂仁县| 息烽县| 博湖县| 涞源县| 阳城县| 白城市| 阿鲁科尔沁旗| 寻甸|