找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Information Processing with Finite Resources; Mathematical Foundat Marco Tomamichel Book 2016 The Author(s) 2016 Entanglement.Infor

[復(fù)制鏈接]
樓主: 喜悅
11#
發(fā)表于 2025-3-23 11:38:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:21:07 | 只看該作者
13#
發(fā)表于 2025-3-23 19:38:15 | 只看該作者
Selected Applications,, in particular the duality relation. Finally, smooth entropies were originally invented in the context of cryptography, and the Leftover Hashing Lemma reveals why this definition has proven so useful.
14#
發(fā)表于 2025-3-23 22:18:23 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:08:58 | 只看該作者
Modeling Quantum Information,physical systems are ultimately governed by the laws of quantum mechanics. In this chapter we quickly review the relevant mathematical foundations of quantum theory and introduce notational conventions that will be used throughout the book.
17#
發(fā)表于 2025-3-24 11:31:14 | 只看該作者
18#
發(fā)表于 2025-3-24 15:25:31 | 只看該作者
19#
發(fā)表于 2025-3-24 19:04:11 | 只看該作者
,Conditional Rényi Entropy,stem. The system as well as the side information can be either classical or a quantum. The goal in this chapter is to define conditional Rényi entropies that are operationally significant measures of this uncertainty, and to explore their properties. Unconditional entropies are then simply a special
20#
發(fā)表于 2025-3-25 02:38:07 | 只看該作者
Smooth Entropy Calculus,lications it suffices to consider just two smooth Rényi entropies: the smooth min-entropy acts as a representative of all conditional Rényi entropies with ., whereas the smooth max-entropy acts as a representative for all Rényi entropies with .. These two entropies have particularly nice properties
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 灵丘县| 阿城市| 迁安市| 朝阳市| 连平县| 铜陵市| 南城县| 临泉县| 普陀区| 资溪县| 荣成市| 南投县| 淮南市| 罗江县| 大洼县| 光泽县| 灌阳县| 景东| 交城县| 广州市| 酒泉市| 西乌珠穆沁旗| 西城区| 襄城县| 文化| 慈利县| 渭源县| 凤山县| 台山市| 江川县| 孙吴县| 建瓯市| 临湘市| 会理县| 三台县| 长岛县| 汉源县| 龙川县| 浦城县| 孟连|