找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups and Their Representations; Anatoli Klimyk,Konrad Schmüdgen Book 1997 Springer-Verlag Berlin Heidelberg 1997 Vector space.al

[復(fù)制鏈接]
樓主: genial
41#
發(fā)表于 2025-3-28 17:08:52 | 只看該作者
Theoretical and Mathematical Physicshttp://image.papertrans.cn/q/image/781224.jpg
42#
發(fā)表于 2025-3-28 20:31:49 | 只看該作者
43#
發(fā)表于 2025-3-28 22:57:40 | 只看該作者
978-3-642-64601-0Springer-Verlag Berlin Heidelberg 1997
44#
發(fā)表于 2025-3-29 06:17:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:49:44 | 只看該作者
Hopf Algebrasultiplication, a counit and an antipode. In some appropriate sense, these structures and their axioms reflect the multiplication, the unit element and the inverse elements of a group and their corresponding properties.
46#
發(fā)表于 2025-3-29 12:21:48 | 只看該作者
-Calculustric functions, and .-orthogonal polynomials). This chapter gives a brief introduction to these topics. The notions and facts developed below will be needed at various places in the book, but they are also of interest in themselves.
47#
發(fā)表于 2025-3-29 15:33:27 | 只看該作者
48#
發(fā)表于 2025-3-29 19:48:20 | 只看該作者
Drinfeld-Jimbo Algebrastures and results on these algebras such as the Poincaré-Birkhoff-Witt theorem, braid group actions, Verma modules, quantum Killing forms, quantum Casimir elements, centers and Harish-Chandra homomorphisms.
49#
發(fā)表于 2025-3-30 02:02:45 | 只看該作者
The Quantum Group ,(2) and Its RepresentationsIn this chapter we investigate the coordinate Hopf algebra of the quantum group .(2) and develop its corepresentation theory. It is the simplest example from the series of quantum groups associated with simple complex Lie groups which will be studied extensively in the second part of the book.
50#
發(fā)表于 2025-3-30 06:41:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
策勒县| 高邑县| 四川省| 澎湖县| 中宁县| 九龙坡区| 利津县| 平昌县| 厦门市| 北川| 常宁市| 高要市| 乌兰浩特市| 凤城市| 莱州市| 钟山县| 澳门| 黄浦区| 望都县| 宜春市| 弥渡县| 依安县| 京山县| 同心县| 多伦县| 宁波市| 衡山县| 隆子县| 阳原县| 大同县| 株洲县| 溆浦县| 定南县| 巴彦淖尔市| 烟台市| 利津县| 阿拉善左旗| 巴东县| 安远县| 包头市| 鄂托克旗|