找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups and Noncommutative Geometry; Yuri I. Manin Textbook 2018Latest edition Springer Nature Switzerland AG 2018 quantum groups.H

[復(fù)制鏈接]
樓主: deflate
31#
發(fā)表于 2025-3-26 22:04:15 | 只看該作者
Theo Raedschelders,Michel Van den Berghds of East African origin. In so doing, China commenced its own tradition of exchange with East Africa—one that was conducted on a somewhat lower but nonetheless comparable scale with the preexistent and more direct trade pursued by merchants hailing from the various contemporary countries of the Ar
32#
發(fā)表于 2025-3-27 02:02:50 | 只看該作者
33#
發(fā)表于 2025-3-27 09:10:13 | 只看該作者
34#
發(fā)表于 2025-3-27 12:27:51 | 只看該作者
https://doi.org/10.1007/978-3-319-97987-8quantum groups; Hopf algebras; Tanaka-Krein; coalgebras; bialgebras; monoidal categories; noncommutative g
35#
發(fā)表于 2025-3-27 16:10:26 | 只看該作者
36#
發(fā)表于 2025-3-27 19:50:14 | 只看該作者
Quantum Groups and Noncommutative Geometry978-3-319-97987-8Series ISSN 2522-5200 Series E-ISSN 2522-5219
37#
發(fā)表于 2025-3-28 00:22:06 | 只看該作者
The Quantum Group ,e to imagine the ring . as a ring of (polynomial) functions on a space which is an object of noncommutative, or “quantum,” geometry. Morphisms of spaces correspond to ring homomorphisms in the opposite direction. For . and . fixed, the set . is also called the set of .-. defined by?..
38#
發(fā)表于 2025-3-28 03:55:05 | 只看該作者
Frobenius Algebras and the Quantum Determinant,e where this pairing is nonsymmetric for ., see [30]. This asymmetry is the reason why the quantum determinant considered in Example . might be noncentral.) The algebra . is called a . if, in addition, (c) ..
39#
發(fā)表于 2025-3-28 07:51:03 | 只看該作者
,Yang–Baxter Equations, the following prescription: represent each element . as a product of transpositions of neighbors and apply . instead of each .. Of course, such a decomposition is nonunique but the resulting linear operator does not depend on it.
40#
發(fā)表于 2025-3-28 13:10:13 | 只看該作者
,The Tannaka–Krein Formalism and (Re)Presentations of Universal Quantum Groups,recisely, our goal is to convince the reader that, as long as one starts with a reasonable algebra ., the universal bi- and Hopf algebras . and . introduced in Chapters . and . are well-behaved objects.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民和| 恩施市| 张家港市| 会东县| 荣成市| 长海县| 曲水县| 三门县| 凌云县| 华亭县| 隆尧县| 宁武县| 育儿| 固安县| 东港市| 南涧| 尼勒克县| 白水县| 鹤庆县| 英德市| 鄂州市| 滨海县| 涞源县| 类乌齐县| 揭阳市| 长垣县| 喀喇沁旗| 昌江| 德州市| 法库县| 贵定县| 五莲县| 茶陵县| 清河县| 普兰店市| 芒康县| 阳新县| 永和县| 邵阳市| 南靖县| 民丰县|