找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups; Proceedings of the 8 H. -D. Doebner,J. -D. Hennig Conference proceedings 1990 Springer-Verlag Berlin Heidelberg 1990 algebr

[復制鏈接]
樓主: EFFCT
21#
發(fā)表于 2025-3-25 07:00:33 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:28:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:03 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:19 | 只看該作者
Extremal projectors for quantized kac-moody superalgebras and some of their applications,one to extend the concept of quantized Kac-Moody algebras to the case of Kac-Moody superalgebras. A q-analogue of the Cartan-Weyl basis is introduced, which has properties similar to the Cartan-Weyl basis of the Kac-Moody (super) algebras. Explicit expressions of the extremal projectors for all quan
26#
發(fā)表于 2025-3-26 03:45:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:53 | 只看該作者
Quantum groups as symmetries of chiral conformal algebras, chiral conformal model is introduced in such a way that the overall (product) representation of the braid group is trivialized. As an introduction we review (in Secs.1 and 2) basic facts about 2-dimensional conformal QFT and about the quantum enveloping algebra .. - ..(sl(2)) and its finite dimensi
29#
發(fā)表于 2025-3-26 16:04:39 | 只看該作者
Quantum symmetry associated with braid group statistics,standing of the symmetry structure dual to braid group statistics is only at its beginning. We use the duality to identify a “first approximation” to this structure and the corresponding algebra of charged fields.
30#
發(fā)表于 2025-3-26 19:20:57 | 只看該作者
Anomalies from the phenomenological and geometrical points of view,gebraic approach, and, in the end and more detailed, the geometric approach. In particular, the topological approach of the Atiyah-Singer is extended in a way which allows the treatment of all chiral anomalies within the geometric (equivariant) point of view.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
杂多县| 景东| 凤山县| 辽宁省| 徐州市| 邹平县| 淮阳县| 科技| 琼结县| 肇庆市| 邢台县| 泾阳县| 棋牌| 梅河口市| 定西市| 黄大仙区| 县级市| 金沙县| 思茅市| 龙门县| 米泉市| 益阳市| 孝昌县| 龙岩市| 贵溪市| 县级市| 桃源县| 伊宁县| 上林县| 芷江| 宜良县| 西昌市| 榆中县| 黄龙县| 鄂州市| 昭平县| 双鸭山市| 高州市| 衡东县| 新昌县| 灵寿县|