找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito Book 19921st edition Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:15:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:16:20 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:09 | 只看該作者
Global Boundary Conditions and ζ(0) Value for the Massless Spin-1/2 Fieldre boundary. The corresponding ζ(0) value is obtained studying the Laplace transform of the heat equation for the squared Dirac operator, and finally deriving the asymptotic expansion of the inverse Laplace transform, i.e. the heat kernel. This squared operator arises from the study of the coupled s
36#
發(fā)表于 2025-3-27 20:10:39 | 只看該作者
Choice of Boundary Conditions in One-Loop Quantum Cosmologythe PDF .(0). Namely, the PDF contribution to the prefactor due to the spin-3/2 field is proportional to .. (. being the three-sphere radius), which does not cancel .. due to the gravitational field subject to Dirichlet boundary conditions for the perturbed three-metric..We therefore study possible
37#
發(fā)表于 2025-3-28 00:06:49 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmology when expressed in terms of its physical degrees of freedom, the transverse-traceless modes. One can formally show that a suitable measure exists such that the gauge-invariant form of the path integral for the ground-state wave function is equal to the one expressed in terms of the physical degrees
38#
發(fā)表于 2025-3-28 02:43:22 | 只看該作者
Local Boundary Conditions for the Weyl Spinoradd to the linearized Einstein action such that the linearized Einstein equations follow from requiring the action to be stationary. Thus we conclude that fixing the linearized electric curvature on .. does not lead to a well-posed classical boundary-value problem. This implies that the correspondin
39#
發(fā)表于 2025-3-28 08:02:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内江市| 陆丰市| 广西| 新乡市| 澜沧| 通城县| 容城县| 微博| 新营市| 昂仁县| 玉田县| 隆林| 黔西县| 牡丹江市| 邻水| 伊金霍洛旗| 南昌市| 衡山县| 新河县| 闵行区| 奉化市| 同江市| 娱乐| 武义县| 衡阳市| 余江县| 临沧市| 刚察县| 台南县| 丹寨县| 昌吉市| 宜兰县| 定襄县| 连云港市| 麻栗坡县| 尉犁县| 武陟县| 海宁市| 阿拉善盟| 栾川县| 衡东县|