找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory III: Gauge Theory; A Bridge between Mat Eberhard Zeidler Book 2011 Springer-Verlag Berlin Heidelberg 2011 elementary p

[復(fù)制鏈接]
樓主: 存貨清單
41#
發(fā)表于 2025-3-28 18:22:33 | 只看該作者
http://image.papertrans.cn/q/image/781188.jpg
42#
發(fā)表于 2025-3-28 19:25:00 | 只看該作者
https://doi.org/10.1007/978-3-642-22421-8elementary particle physics; gauge theory; quantum field theory; partial differential equations
43#
發(fā)表于 2025-3-29 02:42:02 | 只看該作者
The Euclidean Space ,, (Hilbert Space and Lie Algebra Structure),One has to distinguish between . The Euclidean space .. is a real 3-dimensional Hilbert space equipped with the inner product . of vectors .,.. Additionally, the Euclidean space .. is a Lie algebra equipped with the vector product
44#
發(fā)表于 2025-3-29 03:33:44 | 只看該作者
Algebras and Duality (Tensor Algebra, Grassmann Algebra, Clifford Algebra, Lie Algebra),Operator algebras play a fundamental role in algebraic quantum field theory. In order to understand this, one has first to understand the crucial algebraic structures of the Euclidean space. The point is that relevant products possess an invariant meaning, that is, they are independent of the choice of a basis of the Euclidean space.
45#
發(fā)表于 2025-3-29 09:53:58 | 只看該作者
Representations of Symmetries in Mathematics and Physics, and Elementary Particles,The representation of symmetry groups plays a crucial role in physics. In this chapter we discuss the elements of the representation theory of Lie groups and Lie algebras. In particular, we apply representations of the Lie group .(3) and the Lie algebra .(3) to the quark model in strong interaction.
46#
發(fā)表于 2025-3-29 14:06:18 | 只看該作者
Infinitesimal Rotations and Constraints in Physics,The operator .:..→.. is called unitary iff it is linear and it respects the inner product, that is, . The symbol .(..) denotes the set of all unitary operators .:..→... We have . In fact, it follows from (6.1) that . Hence ...=.. Conversely, ...=. implies (6.1). . In fact, .=... implies 1=det?.=det?..det?.=(det?.).det?.=|det?.|..
47#
發(fā)表于 2025-3-29 15:58:56 | 只看該作者
48#
發(fā)表于 2025-3-29 20:48:15 | 只看該作者
Velocity Vector Fields on the Euclidean Manifold ,,We want to study vector fields . on the 3-dimensional Euclidean manifold .. For example, this concerns velocity vector fields or force fields like . We will frequently use the intuitive picture of the velocity vector field of a fluid. For such vector fields . on ., one has to distinguish between
49#
發(fā)表于 2025-3-29 23:53:55 | 只看該作者
The Commutative Weyl ,(1)-Gauge Theory and the Electromagnetic Field,In what follows, we will consider the following two transformations: . Our final goal is to establish a mathematical formalism which is invariant under both transformations.
50#
發(fā)表于 2025-3-30 04:25:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保康县| 周宁县| 江陵县| 象山县| 甘肃省| 剑河县| 册亨县| 万安县| 鹤岗市| 庆安县| 瓦房店市| 商南县| 老河口市| 昂仁县| 益阳市| 紫云| 武定县| 尉犁县| 沂水县| 鹤壁市| 宁化县| 榆社县| 阳原县| 红河县| 渑池县| 桃园县| 东源县| 寿阳县| 漳州市| 县级市| 都昌县| 松溪县| 石河子市| 临沧市| 丹寨县| 长宁区| 阿勒泰市| 射洪县| 建平县| 筠连县| 肃南|