找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization of Singular Symplectic Quotients; N. P. Landsman,M. Pflaum,M. Schlichenmaier Conference proceedings 2001 Springer Basel AG 20

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 10:08:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:30:50 | 只看該作者
Quantized reduction as a tensor product,es of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category..This description paves the way for the quantization of the classical reduction procedure, which is based on the formal analogy between dual pairs of Poiss
14#
發(fā)表于 2025-3-24 01:11:19 | 只看該作者
15#
發(fā)表于 2025-3-24 03:17:35 | 只看該作者
Smooth structures on stratified spaces, one needs an appropriate functional structure on these spaces. But unlike for manifolds such a functional structure on a stratified space is in general not intrinsically given. In this article we explain the basic notions of the theory of stratified spaces and define an appropriate concept for a so
16#
發(fā)表于 2025-3-24 07:11:23 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:20:44 | 只看該作者
Combinatorial quantization of Euclidean gravity in three dimensions,surface, where . is a typically non-compact Lie group which depends on the signature of space-time and the cosmological constant. For Euclidean signature and vanishing cosmological constant, . is the three-dimensional Euclidean group. For this case the Poisson structure of the moduli space is given
19#
發(fā)表于 2025-3-24 20:45:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:32 | 只看該作者
Homology of complete symbols and noncommutative geometry,(.) 0 ? .* (.) × (0, ∞), the dual of.with the zero section removed. We use then these results to compute the Hochschild and cyclic homologies of the algebras of complete symbols associated with manifolds with corners, when the corresponding Lie algebroid is rationally isomorphic to the tangent bundle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜江市| 张家口市| 北京市| 开封县| 濉溪县| 北碚区| 马山县| 阿尔山市| 临夏县| 镇雄县| 宣城市| 武威市| 东阳市| 类乌齐县| 衡南县| 安西县| 汉川市| 普陀区| 昭通市| 青河县| 泰州市| 宣威市| 廊坊市| 松滋市| 文山县| 湖北省| 泾川县| 驻马店市| 静海县| 万州区| 亳州市| 九龙县| 泾川县| 霸州市| 探索| 扎赉特旗| 洪江市| 江口县| 衢州市| 长春市| 绥棱县|