找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization and Infinite-Dimensional Systems; J-P. Antoine,S. Twareque Ali,A. Odzijewicz Book 1994 Plenum Press, New York 1994 Potential.

[復(fù)制鏈接]
樓主: 婉言
11#
發(fā)表于 2025-3-23 10:35:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:11:36 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:15 | 只看該作者
Quantum Frames, Quantization and Dequantizationl, taking as our working example the case of the Poincaré group in 1+1 space-time dimensions. We also compare this approach to the familiar geometric quantization method, which turns out to be less versatile than the new one.
14#
發(fā)表于 2025-3-24 00:16:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:45 | 只看該作者
d theory, geometric quantization and symplectic geometry, coherent states methods, holomorphic representation theory, Poisson structures, non-commutative geometry, supersymmetry and quantum groups. The editors have the pleasant task of first thanking all the local organizers, in particular Dr. K. Gilewicz, fo978-1-4615-2564-6
16#
發(fā)表于 2025-3-24 07:55:40 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:07 | 只看該作者
Geometric Quantization of String Theory Using Twistor ApproachThe geometric quantization scheme for the string theory is formulated in terms of a symplectic twistor bundle over the phase manifold.
19#
發(fā)表于 2025-3-24 22:06:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:35 | 只看該作者
On the Spectrum of the Geodesic Flow on SpheresWe propose a uniform method for derivation of the energy spectrum of the geodesic flow of the sphere .. (and hence of the Kepler problem) for all dimensions . ≥ 1. The idea is to use Marsden-Weinstein reduction in the context of equivariant cohomology. The one-dimensional case is thus covered by the general geometric quantization scheme.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资源县| 滕州市| 峡江县| 商水县| 汉中市| 荆州市| 五台县| 宜君县| 宁南县| 高雄县| 岑溪市| 博湖县| 长岛县| 会泽县| 嘉善县| 同江市| 习水县| 寿光市| 罗定市| 梁河县| 宁远县| 陆良县| 乌兰县| 辽中县| 澄迈县| 葵青区| 丹寨县| 永登县| 新营市| 澄城县| 康保县| 竹北市| 手机| 白山市| 金川县| 汾阳市| 罗源县| 蚌埠市| 新田县| 获嘉县| 吉首市|