找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
31#
發(fā)表于 2025-3-27 00:45:03 | 只看該作者
32#
發(fā)表于 2025-3-27 03:21:11 | 只看該作者
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition,30). As noted by Tarski, any quantifier elimination method for this theory also provides a decision method, which enables one to decide whether any sentence of the theory is true or false. Since many important and difficult mathematical problems can be expressed in this theory, any computationally f
33#
發(fā)表于 2025-3-27 05:39:56 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic, theories of logic: the first-order theory of the real numbers under addition, and Presburger arithmetic — the first-order theory of addition on the natural numbers. There is a fixed constant . > 0 such that for every (nondeterministic) decision procedure for determining the truth of sentences of re
34#
發(fā)表于 2025-3-27 11:55:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:09 | 只看該作者
An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition,s, provided that the required amount of computation can be sufficiently reduced. An important component of the CAD method is the projection operation. Given a set . of .-variate polynomials, the projection operation produces a certain set . of (. ? l)-variate polynomials such that a CAD of .-dimensi
36#
發(fā)表于 2025-3-27 19:23:31 | 只看該作者
Partial Cylindrical Algebraic Decomposition for Quantifier Elimination,s by means of quantifier elimination, provided that the required amount of computation can be sufficiently reduced. Arnon (1981) introduced the important method of clustering for reducing the required computation and McCallum (1984) introduced an improved projection operation which is also very effe
37#
發(fā)表于 2025-3-28 00:20:09 | 只看該作者
38#
發(fā)表于 2025-3-28 03:00:55 | 只看該作者
39#
發(fā)表于 2025-3-28 08:49:10 | 只看該作者
40#
發(fā)表于 2025-3-28 13:59:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸西县| 杂多县| 彰化县| 石景山区| 石狮市| 聂拉木县| 内江市| 唐山市| 宿州市| 无棣县| 泾川县| 化州市| 北碚区| 泰宁县| 临洮县| 西华县| 专栏| 嘉祥县| 襄城县| 保定市| 双牌县| 礼泉县| 会理县| 安宁市| 紫阳县| 漳浦县| 雅安市| 宁武县| 平远县| 金昌市| 吉林省| 儋州市| 南华县| 南投县| 伊通| 大庆市| 渝中区| 平罗县| 垣曲县| 通辽市| 界首市|