找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantenmechanik für Fortgeschrittene (QM II); Franz Schwabl Textbook 20002nd edition Springer-Verlag Berlin Heidelberg 2000 Dirac-Gleichun

[復(fù)制鏈接]
樓主: hexagon
41#
發(fā)表于 2025-3-28 17:08:05 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:39:06 | 只看該作者
Physikalische Interpretation der L?sungen der Dirac-Gleichungn mit negativer Energie und für ruhende Teilchen L?sungen mit negativer Ruhemasse. Die kinetische Energie in diesen Zust?nden ist negativ; das Teilchen bewegt sich entgegengesetzt zur Bewegung in den üblichen Zust?nden positiver Energie. So wird ein Teilchen mit der Ladung eines Elektrons durch das
44#
發(fā)表于 2025-3-29 07:03:13 | 只看該作者
Symmetrien und weitere Eigenschaften der Dirac-Gleichungrsucht werden. Dazu erinnern wir zun?chst an das in Abschnitt 7.1 dargestellte Transformationsverhalten von Spinoren bei passiven und aktiven Transformationen. Anschlie?end wenden wir uns der Transformation des Viererpotentials zu und untersuchen die Transformation des Dirac-Hamilton-Operators.
45#
發(fā)表于 2025-3-29 08:49:48 | 只看該作者
Quantisierung von relativistischen Feldernuantisierungseigenschaften bekannt sind. Im Kontinuumsgrenzfall dieses Oszillatorsystems resultiert die Bewegungsgleichung einer schwingenden Saite in einem harmonischen Potential, welche in ihrer Form identisch mit der Klein-Gordon-Gleichung ist. Mit der quantisierten Bewegungsgleichung der Saite u
46#
發(fā)表于 2025-3-29 12:04:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:40:20 | 只看該作者
48#
發(fā)表于 2025-3-29 23:35:10 | 只看該作者
49#
發(fā)表于 2025-3-30 03:47:33 | 只看該作者
Quantisierung des Strahlungsfeldesg in der St?rungstheorie liefern, so sieht man, da? der Propagator ?quivalent zu einem kovarianten ist. Die Schwierigkeit, das Strahlungsfeld zu quantisieren, kommt von der Masselosigkeit der Photonen und der Eichinvarianz. Deshalb hat das Vektorpotential ... effektiv nur zwei dynamische Freiheitsgrade und die instantane Coulomb-Wechselwirkung.
50#
發(fā)表于 2025-3-30 04:51:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 班戈县| 崇仁县| 黄龙县| 类乌齐县| 周至县| 灵璧县| 姜堰市| 纳雍县| 博罗县| 固原市| 福海县| 神木县| 体育| 商水县| 湖北省| 崇文区| 濉溪县| 鄄城县| 亚东县| 吉木萨尔县| 普陀区| 嘉兴市| 清原| 河北省| 沈丘县| 苏州市| 土默特右旗| 永平县| 信阳市| 盱眙县| 宁乡县| 海安县| 肥乡县| 四子王旗| 桦南县| 云龙县| 浦北县| 寿宁县| 和政县| 茂名市|