找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratische Zahlk?rper; Eine Einführung mit Franz Lemmermeyer Textbook 2017 Springer-Verlag GmbH Deutschland 2017 Idealklassengruppe.diop

[復(fù)制鏈接]
樓主: Harding
11#
發(fā)表于 2025-3-23 11:57:59 | 只看該作者
978-3-662-53821-0Springer-Verlag GmbH Deutschland 2017
12#
發(fā)表于 2025-3-23 17:34:50 | 只看該作者
Vorgeschichte,pitel verfolgen wir diese Gleichung durch ihre Geschichte von Diophant über Bachet und Fermat bis hin zu Euler und zeigen, auf welche Probleme Eulers geniale Idee geführt hat, diese Gleichung durch das Rechnen mit Zahlen der Form . zu l?sen.
13#
發(fā)表于 2025-3-23 18:54:46 | 只看該作者
,Teilbarkeit in Integrit?tsbereichen,iesem Kapitel wollen wir diese Begriffe in quadratischen Zahlringen untersuchen. Au?erdem zeigen wir, dass in Ringen mit einem euklidischen Algorithmus der Satz von der eindeutigen Zerlegbarkeit in Primelemente gilt. Weiter taucht erstmals Ideale auf, die wir sp?ter zu einem zentralen Objekt unserer Untersuchungen machen werden.
14#
發(fā)表于 2025-3-23 23:30:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:58 | 只看該作者
,Quadratische Zahlk?rper,In diesem Kapitel legen wir die Grundlagen für das Rechnen in quadratischen Zahlringen. Wir kl?ren, was ein quadratischer Zahlk?rper ist und welche seiner Elemente wir als ?ganz“ betrachten wollen. Darüberhinaus erkl?ren wir, warum man um algebraische nicht herumkommt, wenn man etwa gewisse Eigenschaften der Fibonaccizahlen untersuchen m?chte.
16#
發(fā)表于 2025-3-24 09:22:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:06 | 只看該作者
18#
發(fā)表于 2025-3-24 15:53:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:11 | 只看該作者
Vorgeschichte,pitel verfolgen wir diese Gleichung durch ihre Geschichte von Diophant über Bachet und Fermat bis hin zu Euler und zeigen, auf welche Probleme Eulers geniale Idee geführt hat, diese Gleichung durch das Rechnen mit Zahlen der Form . zu l?sen.
20#
發(fā)表于 2025-3-25 03:05:54 | 只看該作者
,Teilbarkeit in Integrit?tsbereichen,iesem Kapitel wollen wir diese Begriffe in quadratischen Zahlringen untersuchen. Au?erdem zeigen wir, dass in Ringen mit einem euklidischen Algorithmus der Satz von der eindeutigen Zerlegbarkeit in Primelemente gilt. Weiter taucht erstmals Ideale auf, die wir sp?ter zu einem zentralen Objekt unserer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云林县| 瑞丽市| 宜州市| 饶阳县| 九江县| 海安县| 沾益县| 特克斯县| 南乐县| 垫江县| 高密市| 句容市| 伊宁县| 大宁县| 濉溪县| 南康市| 安多县| 越西县| 保康县| 南岸区| 柯坪县| 九江市| 钟祥市| 星座| 东乡族自治县| 鄂尔多斯市| 剑河县| 延川县| 南和县| 珠海市| 南涧| 新乡县| 巴塘县| 舟山市| 临朐县| 陆丰市| 隆昌县| 清水河县| 德昌县| 闽侯县| 临城县|