找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic and Hermitian Forms over Rings; Max-Albert Knus Book 1991 Springer-Verlag Berlin Heidelberg 1991 Algebra.Clifford Algebren.Cliff

[復(fù)制鏈接]
樓主: 斷頭臺(tái)
11#
發(fā)表于 2025-3-23 12:34:03 | 只看該作者
Forms in Categories, the transfer theorem. The first one is a far reaching generalization of the operation “working modulo the radical” and the second can be viewed as an abstract Morita theory. The main result is a Krull-Schmidt theorem for hermitian spaces.
12#
發(fā)表于 2025-3-23 16:25:18 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/q/image/780056.jpg
13#
發(fā)表于 2025-3-23 20:13:48 | 只看該作者
https://doi.org/10.1007/978-3-642-75401-2Algebra; Clifford Algebren; Clifford algebras; Dimension; Grad; Hermitesche Formen; K-theory; Quadratische
14#
發(fā)表于 2025-3-24 02:13:31 | 只看該作者
Hermitian Forms over Rings,This first chapter gives the basic theory of hermitian and quadratic forms. Once the general formalism is introduced, we restrict to forms over finitely generated projective modules.
15#
發(fā)表于 2025-3-24 03:30:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:34 | 只看該作者
Splitting and Cancellation Theorems,The main results of this quite technical chapter are the splitting, stability and cancellation theorems for unitary spaces. These results are unitary versions of theorems of Bass, Serre and Vaserstein for projective modules. For completeness we also present the linear results.
17#
發(fā)表于 2025-3-24 13:33:13 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:01:32 | 只看該作者
978-3-642-75403-6Springer-Verlag Berlin Heidelberg 1991
20#
發(fā)表于 2025-3-25 01:56:41 | 只看該作者
Quadratic and Hermitian Forms over Rings978-3-642-75401-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳区| 通城县| 江川县| 辽宁省| 永登县| 电白县| 高邮市| 五家渠市| 启东市| 精河县| 东海县| 柘荣县| 康乐县| 绍兴市| 岗巴县| 荣成市| 叶城县| 兴和县| 六盘水市| 蛟河市| 龙门县| 合水县| 南城县| 霍城县| 清水河县| 清新县| 阿图什市| 常州市| 新宁县| 玉山县| 高密市| 城固县| 昌黎县| 磴口县| 油尖旺区| 华池县| 辉县市| 张家界市| 玉环县| 普兰县| 张家界市|