找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[復制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 11:11:30 | 只看該作者
The Zeta Function of an Algebraic Number Field and Some Applications, in Sect.?. we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect.?.; in particular, the Euler-Dedekind
12#
發(fā)表于 2025-3-23 15:07:30 | 只看該作者
Dirichlet ,-Functions and the Distribution of Quadratic Residues,mbol of . are positive, and it transpires that the positivity of the sum of these Legendre-symbol values, for certain primes ., are determined precisely by the positivity of .(1,?.) for certain Dirichlet characters .. We make all of this precise in Sect.?., where the principal theorem of this chapte
13#
發(fā)表于 2025-3-23 18:17:11 | 只看該作者
Quadratic Residues and Non-Residues in Arithmetic Progression,ss Davenport’s results and the technique that he used to obtain them in Sect.?.. Davenport’s approach uses another application of the Dirichlet-Hilbert trick, which we used in the proofs of Theorems?. and?. presented in Chap.?., together with an ingenious estimate of the absolute value of certain Le
14#
發(fā)表于 2025-3-24 00:23:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:48:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:44:22 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:33 | 只看該作者
https://doi.org/10.1007/978-3-319-45955-411-XX; 12D05, 13B05, 52C05, 42A16, 42A20; quadratic residues; quadratic non-residues; law of quadratic
20#
發(fā)表于 2025-3-25 01:35:53 | 只看該作者
Steve Wrightyrolab immunoassays are used to gain more information about biomolecular interactions that can be useful in assay development or quantify analytes in samples. Gyrolab immunoassays can be used to cover a broad concentration range and diversity of matrices in applications ranging from biomarker monito
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麦盖提县| 晋江市| 林口县| 江都市| 吉水县| 茂名市| 保定市| 新河县| 屏东县| 厦门市| 英吉沙县| 呼伦贝尔市| 乃东县| 普兰店市| 太和县| 太保市| 永仁县| 南平市| 洛隆县| 武强县| 正蓝旗| 天长市| 宁阳县| 元氏县| 南昌县| 嘉禾县| 哈巴河县| 天台县| 陆河县| 镇远县| 京山县| 泾川县| 台南县| 板桥市| 商都县| 德保县| 奇台县| 巩留县| 墨竹工卡县| 丰顺县| 金寨县|