找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Mappings and Clifford Algebras; Jacques Helmstetter,Artibano Micali Book 2008 Birkh?user Basel 2008 Clifford algebra.Lipschitz g

[復(fù)制鏈接]
樓主: Body-Mass-Index
11#
發(fā)表于 2025-3-23 13:06:37 | 只看該作者
12#
發(fā)表于 2025-3-23 16:28:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:36:41 | 只看該作者
14#
發(fā)表于 2025-3-24 02:13:40 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:18:39 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:37 | 只看該作者
Quadratic Mappings,n . will be especially helpful in ., where their effectiveness also depends on an insightful use of localization and globalization. Besides, the concept of “hyperbolic space” is also essential in the last Sections . and . devoted to Witt rings.
18#
發(fā)表于 2025-3-24 18:49:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:13 | 只看該作者
Hyperbolic Spaces,l isomorphisms . → (.)* → .* and . → . → .* (see (2.3.7)). As a quadratic module, . will also interest us, and the short notation (.) (instead of (.)) will be preferred; it is clear that the quadratic form . on . is determined by its restriction to . and by the above isomorphism . → .*.
20#
發(fā)表于 2025-3-25 02:01:52 | 只看該作者
Book 2008rphisms of quadratic forms and Clifford algebras are based on the concept of the Lipschitz monoid, from which several groups are derived; and the Cartan-Chevalley theory of hyperbolic spaces becomes much more general, precise and effective..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州市| 永善县| 亳州市| 靖远县| 武邑县| 屏山县| 奎屯市| 长兴县| 关岭| 渑池县| 宝应县| 海阳市| 晋江市| 论坛| 汉寿县| 于都县| 满洲里市| 平山县| 揭东县| 彭水| 临清市| 潞城市| 韶山市| 诏安县| 红原县| 宝山区| 精河县| 白山市| 衡阳市| 峨眉山市| 贡嘎县| 咸宁市| 北辰区| 绩溪县| 南木林县| 衡南县| 莱阳市| 从化市| 孝感市| 桃江县| 田林县|