找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.proof

[復(fù)制鏈接]
樓主: genial
21#
發(fā)表于 2025-3-25 03:32:33 | 只看該作者
Classification of Hermitean Forms in Characteristic 2,All forms considered in this chapter are E-hermitean forms over a field k of characteristic 2 equipped with antiautomorphism ???..
22#
發(fā)表于 2025-3-25 08:43:38 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:36 | 只看該作者
Involutions in Hermitean Spaces in Characteristic Two,Fields and forms are as specified under the caption of Chapter VIII.
24#
發(fā)表于 2025-3-25 17:07:51 | 只看該作者
Extension of Isometries,The main result in this chapter is a theorem in [1] on the extension of isometries φ: V →V between ⊥-closed subspaces of a sesquilinear space E (Theorems 5 and 9 below).
25#
發(fā)表于 2025-3-25 21:48:36 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:53 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:35 | 只看該作者
Quadratic Forms,Quadratic forms are closely related to orthosymmetric sesquilinear forms and, to a large extent, they behave very similarly. In fact, the two concepts partly overlap (cf. Example 2 in Section 3 below).
29#
發(fā)表于 2025-3-26 13:10:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:56 | 只看該作者
,Diagonalization of ?0-Forms,ecomposition into mutually orthogonal lines is impossible. The problem of “normalizing” bases brings us to stability and the beginner is confronted with the first Ping-Pong style proof with its characteristic back-and-forth argument (Theorem 2). These matters are basic and their knowledge is tacitly assumed in the rest of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 丰顺县| 定结县| 绵竹市| 涞水县| 黑河市| 宁强县| 丁青县| 仙居县| 霍州市| 阳春市| 荆门市| 东丰县| 偃师市| 六枝特区| 财经| 阳高县| 安仁县| 娄烦县| 章丘市| 山东省| 屏南县| 休宁县| 方山县| 长垣县| 泰安市| 饶平县| 大同市| 瓦房店市| 廉江市| 西昌市| 泗水县| 吉木乃县| 天全县| 通榆县| 望谟县| 丰都县| 荃湾区| 密云县| 中西区| 荃湾区|