找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups; Alexander J. Hahn Textbook 1994 Springer-Verlag New York, Inc. 1994 Ari

[復(fù)制鏈接]
樓主: 生動(dòng)
21#
發(fā)表于 2025-3-25 04:20:04 | 只看該作者
Alexander J. Hahne is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
22#
發(fā)表于 2025-3-25 07:44:19 | 只看該作者
e is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
23#
發(fā)表于 2025-3-25 14:24:47 | 只看該作者
24#
發(fā)表于 2025-3-25 19:50:39 | 只看該作者
https://doi.org/10.1007/978-1-4684-6311-8Arithmetic Forms; Clifford Algebras; K-theory; Quadratic Algebras; algebra; clifford algebra; lie algebra;
25#
發(fā)表于 2025-3-25 20:55:05 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:22 | 只看該作者
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups978-1-4684-6311-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
27#
發(fā)表于 2025-3-26 05:14:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:11:20 | 只看該作者
29#
發(fā)表于 2025-3-26 12:48:05 | 只看該作者
Groups of Free Quadratic Algebras,cus on the properties of this group as well as those of its graded analogue. These will be important in Chapter 7 in the analysis of the Clifford algebra of a quadratic module. Certain “projective” versions of these groups will have crucial impact on the structure of the Brauer and Witt groups over R. See Chapters 13 and 14.
30#
發(fā)表于 2025-3-26 17:21:41 | 只看該作者
Bilinear and Quadratic Forms,rms, discriminant modules, and the group Dis(R). Proof by localization, i.e., by reduction to the case of a local ring, is introduced here. For the entire chapter, we fix a commutative ring R and a right R-module M.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬莱市| 贵港市| 三门峡市| 那曲县| 三河市| 大荔县| 乌鲁木齐市| 定南县| 油尖旺区| 兰坪| 和政县| 凤阳县| 山阳县| 郑州市| 衡水市| 青岛市| 天柱县| 和顺县| 大姚县| 崇文区| 新民市| 明光市| 南城县| 神农架林区| 手游| 辛集市| 望都县| 磐安县| 亳州市| 湖南省| 合肥市| 额尔古纳市| 博罗县| 荥经县| 乌鲁木齐县| 建平县| 安国市| 勐海县| 鹤壁市| 璧山县| 城口县|