找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of International Conference on Data, Electronics and Computing; ICDEC 2023, Volume 2 Nibaran Das,Ajoy Kumar Khan,Debotosh Bhatt

[復(fù)制鏈接]
樓主: ossicles
11#
發(fā)表于 2025-3-23 13:45:47 | 只看該作者
BLUE-Net: BLUmberg Function-Based Ensemble Network for Liver and Tumor Segmentation from CT Scans,rning models, particularly U-Net-like architectures, have obtained notable success in medical image segmentation. Ensemble learning is a powerful approach that helps leverage the performance of an overall model by incorporating the decisions of multiple models. In this paper, we propose an ensemble
12#
發(fā)表于 2025-3-23 16:17:06 | 只看該作者
Identification of Lung Cancer Affected CT-Scan Images Using a Light-Weight Deep Learning Architecture,ply various measures for reducing the adversity of this disease among the patients. It usually requires the understanding of Computed Tomography Scan (CT-Scan) images captured from the lung for inferring if the patient is affected by lung cancer or not. This is essentially a classification task that
13#
發(fā)表于 2025-3-23 20:41:47 | 只看該作者
14#
發(fā)表于 2025-3-23 22:38:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:30 | 只看該作者
A Testable and Fault-Tolerant Synthesis for Paper-Based Digital Microfluidic Biochips Using Swarm Optimization, biochemical and biomedical assays. On a P-DMFB chip, patterned electrode array and control lines are printed by CNT ink on a paper with dielectric parylene-C film and hydrophobic teflon film. Here the droplets are controlled by electrowetting technology. Manufacturing of P-DMFBs is efficient and le
16#
發(fā)表于 2025-3-24 09:25:16 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:49 | 只看該作者
A CNN Accelerator on RISC-V-Based SoC for Latency Constrained Edge Networks, deep learning techniques used in different domains like computer vision, audio and video processing, etc. Hence various smaller scale deep learning models have already been proposed for execution on edge devices. Either the accuracy or latency of these lightweight models is not sufficient for using
18#
發(fā)表于 2025-3-24 16:53:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:36 | 只看該作者
Federated Learning-Based Malware Detection for IoT Platforms,lace. This study presents a comprehensive exploration of the potential of federated learning to address IoT malware concerns while delving into the security intricacies inherent in this novel learning paradigm. We introduce a novel framework that leverages federated learning to detect malware threat
20#
發(fā)表于 2025-3-25 01:54:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 宁晋县| 龙州县| 嘉禾县| 鹤庆县| 萨嘎县| 博爱县| 温州市| 南漳县| 曲周县| 清新县| 莱州市| 穆棱市| 台南市| 伊吾县| 神农架林区| 平泉县| 尼玛县| 深圳市| 准格尔旗| 略阳县| 泗水县| 灵台县| 丰县| 通渭县| 太和县| 灵山县| 临西县| 呼伦贝尔市| 泾阳县| 句容市| 淮北市| 封丘县| 酒泉市| 元氏县| 长春市| 光泽县| 右玉县| 扶余县| 通州市| 汉阴县|