找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Invariance in Stochastic Dynamics; Verona, Italy, March Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger Conference proceedings

[復制鏈接]
樓主: 無感覺
21#
發(fā)表于 2025-3-25 05:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94108-4 process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
23#
發(fā)表于 2025-3-25 12:34:38 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:22 | 只看該作者
,Asymptotic Expansion for a Black–Scholes Model with Small Noise Stochastic Jump-Diffusion Interest ar, we consider the case when the small perturbation is due to a general, but small, noise of Lévy type. Moreover, we provide explicit expressions for the involved expansion coefficients as well as accurate estimates on the remainders.
25#
發(fā)表于 2025-3-25 20:17:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:53:15 | 只看該作者
Rough Homogenisation with Fractional Dynamics,actional and non-strong-mixing noise and providing new examples. The emphasise of the review will be on the recently developed effective dynamic theory for two scale random systems with fractional noise: Stochastic Averaging and ‘Rough Diffusion Homogenisation Theory’. We also study the geometric models with perturbations to symmetries.
27#
發(fā)表于 2025-3-26 08:16:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:01:44 | 只看該作者
On the Positivity of Local Mild Solutions to Stochastic Evolution Equations, process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
29#
發(fā)表于 2025-3-26 14:57:37 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:59 | 只看該作者
https://doi.org/10.1007/978-3-030-87432-260HXX, 60H15, 34C15, 35B06, 37HXX; invariance and symmetry; dimensional stochastic differential equati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
庆安县| 怀集县| 崇州市| 高平市| 永州市| 濉溪县| 如皋市| 宣化县| 宿松县| 万州区| 锡林郭勒盟| 乌拉特后旗| 社旗县| 德惠市| 浪卡子县| 麻栗坡县| 凤庆县| 扎囊县| 南安市| 奇台县| 平舆县| 沧源| 南漳县| 手游| 岱山县| 华亭县| 佳木斯市| 渝北区| 拉孜县| 石屏县| 满洲里市| 潞城市| 莱芜市| 普定县| 托克逊县| 阳新县| 舟山市| 瑞安市| 平江县| 宜君县| 成安县|