找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Topic Models; Foundation and Appli Di Jiang,Chen Zhang,Yuanfeng Song Book 2023 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
樓主: 衰退
11#
發(fā)表于 2025-3-23 13:25:22 | 只看該作者
12#
發(fā)表于 2025-3-23 14:34:02 | 只看該作者
Topic Models, to a wide range of tasks. In this chapter, we select some representative topic models for introducing the mathematical principles behind topic models. By studying this chapter, readers will have a deep understanding of the foundation of topic models, and the ability to select appropriate existing m
13#
發(fā)表于 2025-3-23 18:28:50 | 只看該作者
Expectation Maximization,hod used to obtain the local optima of these parameters of probabilistic graphical models with latent variables. This chapter introduces how to apply the EM algorithm in topic models such as PLSA. The foundation of EM algorithm is introduced in Sect. 4.1. The convergence of EM is introduced in Sect.
14#
發(fā)表于 2025-3-24 00:04:47 | 只看該作者
15#
發(fā)表于 2025-3-24 04:53:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:19:53 | 只看該作者
Distributed Training, to train such large-scale topic models encounters bottlenecks in computing efficiency and data storage. Therefore, it is necessary to develop distributed training mechanisms for topic models. In this chapter, we introduce distributed computing architectures in Sect. 7.1, followed by the distributed
17#
發(fā)表于 2025-3-24 11:54:35 | 只看該作者
Topic Models,. By studying this chapter, readers will have a deep understanding of the foundation of topic models, and the ability to select appropriate existing models or design brand-new models for their own scenarios.
18#
發(fā)表于 2025-3-24 16:48:31 | 只看該作者
Expectation Maximization,the EM algorithm in topic models such as PLSA. The foundation of EM algorithm is introduced in Sect. 4.1. The convergence of EM is introduced in Sect. 4.2 and the generalized expectation maximization (GEM) is discussed in Sect. 4.3. Finally, the applications of EM and GEM in topic models are explained in Sect. 4.4.
19#
發(fā)表于 2025-3-24 22:59:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:06:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安县| 门头沟区| 新疆| 南京市| 招远市| 凌云县| 石台县| 通江县| 民丰县| 青浦区| 和政县| 施甸县| 宁津县| 沛县| 清原| 清镇市| 龙门县| 湘乡市| 兰西县| 高雄县| 九龙坡区| 宝兴县| 神农架林区| 育儿| 留坝县| 新密市| 闽侯县| 郑州市| 荣昌县| 永城市| 称多县| 铜鼓县| 特克斯县| 威远县| 北安市| 荣昌县| 安宁市| 天台县| 东方市| 西乌| 喀什市|